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I. 0NRDUr

During the grant period 5/15/83 -8/14/84, the efforts of our group were

directed towards investigating surface scattering of ions for the purpose of

obtaining stimulated emission of soft x-rays, as well as scaling of free

electron laser to x-ray wavelengths, and nuclear spectroscopy in the x-ray

regime.

The following report consists of three sections and six appendices. The

first section summarizes scattering of ions from different types of surfaces and 0

stimulated emission of light from scattered ions. The second section summuarizes

our continuing work in the area of an x-ray free electron laser. Mother

continuing effort of our group has been in nuclear spectroscopy with x-ray

lasers and intense fields. The work in this area, corresponding to the relevant

grant period, is summarized in the third section. The papers which detail the

0 results of these investigations either in published or preprint form are

reproduced in the appendices.
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II. SURFA(M SCATI_,RING OF IONS AND SOkT X-RAY E.DIISSION

Coherent excitation of ions by the periodic potential of a crystal proposed

by Okorokov sometime ago arises from the fact that an ion moving in a crystal

with speed v experiences a time dependent potential with harmonics

= (2nvn)/d, where n is a positive integer and d is the lattice spacing in the

direction of ionic motion. If v and d are such that o matches an ionic
n

thtransition frequency, then ions are resonantly excited by the n- harmonic. The

probability that ions are in an excited state becomes a periodic function of the

thickness of the foil, which can be viewed as a consequence of the Rabi

oscillations of ions in their rest frame. One can expect the same physical

picture to hold for ions scattering from crystal surfaces at grazing incidences.

This may be called the surface-Okorokov effect and offers interesting

possibilities for obtaining stimulated emission of soft x-rays from ions. One

can coherently excite a beam of ions into certain high lying states by an -

adjustment of the beam velocity to the crystal periodicity, and obtain an

effective population inversion relative to some low lying states. For such a

purpose, the grazing angle surface scattering geometry has considerable

advantages over the beam foil geometry in that the damage to the surface

resulting from ion bombardment is minimized at grazing incidences and the same

surface can be used repeatedly. Furthermore, stopping powers of surfaces can be

lower than stopping powers of bulk materials, which means that ions can

resonantly interact with surfaces for longer distances than with foils.

We analyzed the scattering of hydrogenic ions, such as Li 2 , Be 3 , etc.,

from crystal surfaces at grazing incidences, and showed that ions execute

extremely rapid Rabi oscillations in their rest frame ( lO17 sec-). We assumed

that the ionic beam simultaneously interacts with a coherent electromagnetic

field whose frequency matches one of the ionic transition frequencies

. . . .~ -... ... .... ...
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corresponding to an effective population inversion, and showed that the

inhomogeneously broadened gain of the signal can be substantial, on the order of

1 cm-1, for reasonable beam currents such as 4.8 ampere/mm2. The analysis is detailed

in the preprint in Appendix A, which is accepted for publication in Phys.Rev. Letters.

In the free electron laser, lasing occurs at the wavelength X 2Xq/y,

where X is the wiggler wavelength of the magnetic selonoid and y is the ratio
q

of the electron's energy to its rest mass energy. In principle one can decrease

X either by increasing the electronic energy or by decreasing the wiggler

wavelength X . The latter method is not very practical with mechanical systemsq

used in free electron lasers. There are, however, systems which are periodic on

atomic scale, and which might be used as short wavelength wigglers for electrons

or ions. An interesting idea is to use antiferromagnetic crystals as wigglers

for ions. These crystals have strong internal magnetic fields that are periodic

with some lattice constant and can be used to excite ions coherently. Excited -

ions can then decay radiatively and thus convert the virtual photons of the

material magnetic field to real photons.

We analyzed the problem for a beam of hydrogenic Be+ 3 ions scattering from

the surface of an antiferromagnetic material such as FeF2 or MnO. In the .

geometry we considered, Be+3 ions penetrate just below the surface of the

material, travel some distance L, and then come out. They simultaneously

interact with soft X-Ray signal of frequency hws % 30 eV which matches the

frequency W32 of the n=3 n=2 transitions of Be+3  We first considered the

magnetization fields inside an antiferromagnet and deduced the general form of

the fields from a simple argument. We then obtained a simple set of equations

of motion for the ionic amplitude from the Schrodinger equation in the rest

frame of an ion. These equations show that ions in their rest frame execute

Rabi oscillations between the states n = 1 and n = 3, if the ion velocity is

S LI ]I -

...............................................................
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properly adjusted. 'The Rabi frequency £R is proportional to B0, the amplitude

of the magnetization of one of the sublattices of the antiferromagnet, and to v,

the inn velocity. OR is on the order of 4x101 3 sec-1 for v = 10 9 cm/sec, which

is nearly four orders of magnitude larger than the spontaneous radiative decay

rate of the n = 3 states of be"3 . Because ions are actually moving with

velocity v, the Rabi oscillation in the rest frame become spatial oscillations

in the lab frame. If L R designates the spatial interval for half a Rabi cycle

(i.e., LR is the minimum distance required for an ion to travel in the material

in order to get the ion fully excited into the n = 3 states, if it is initially

in the ground state), then LR is on the order of 10-4 cm. We also analyzed the

gain of the signal field in the weak signal regime. Due to the coherent

excitation of ions, the expression for the gain differs from the usual

small-signal swept-gain, and have a number of novel features. It turns out that

only for a narrow region of detuning between ,) and . can one get finite gain.

The maximum gain is about 10 cm-1 if the ionic density is on the order of 101"

cm 3 . Appendix B reproduces a preprint which gives the details of these

investigations.

Our work with magnetic surfaces has yielded another idea which might lead

to a new class of lasers. In diatomic molecules formed by the group VI elements

(e.g., 02, S., SO) and by a combination of group V and group VII elements (e.g.,

NF, NCI, PC1), the spin selection rule .\S = 0 leads to highly metatable states

which can be very useful for high power laser systems. A well-known case is the

1A state of the oxygen molecule. Due to spin and parity symmetry, its decay tog

the ground state is highly forbidden with spontaneous decay rate 2.6 x 10- '
g

sec-1. This fact is used in oxygen-iodine lasers to store the energy in the i.%

state of 0,, which is then collisionally transferred to atomic iodine via the

reaction O, ( + I(P3/2) 02('.") + I(?Pl/). Radiative emission takes
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place on the iodine through its decay back to 2pI/2' which is a magnetic-dipole

allowed transition with a spontaneous transition rate of 7.7 sec-1 . The

frequencies of 1  - 3E and 2p - 2p transitions match, which makes it
g e 1/2 3/2

possible to resonantly transfer energy between 02 and I. In practice it is

difficult to find such matching partners for other metastable systems which

might have applications to high power lasers. For this reason, as well as to

avoid loses involved in collisional energy transfers, there has long been an

interet in obtaining radiative emissions directly from the excited metastable

system itself. To achieve direct radiative emission, it is necessary to break

the various symmetries of the metastable system. For instance, the parity

symmetry can be broken by applying static electric field or nonresonant

radiation, or by means of nonresonant collisons with another molecular or atomic

system. On the other hand, breaking of the spin symmetry requires application

of either a spatially varying magnetic field as in a Stern-Gerlach device, or a

direct spin-spin coupling another system. This latter possibility can be

realized by putting the singlet delta oxygen in contact with a magnetic surface,

where the electrons of the singlet delta oxygen will couple to the external -

spins through their internal magnetic moments. By means of a simple

perturbation analysis, we showed that both parity and spin symmetries are broken

and that an electric dipole moment is induced between 1A and 3E- which is on
g g 

the order of 10-2 Debye. This implies a spontaneous transition rate of about

102 sec -1 , which is nearly six orders of magnitude larger than the corresponding

rate for isolated 02. The analysis should also hold for NF which has an

ultraviolet transition frequency between the electronic ground states and the

first excited singlet delta states. This work is already published (Phys. Rev.

A 29, k'ebruary, 1984). The paper is reproduced in Appendix C.

. •. "• ... ".
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III. FREE ELOT1RON LASER AT X-RAY WAVELENGTHS

An x-ray free electron laser must operate with large gain per pass because 0

of the poor quality of available mirrors at x-ray frequencies. Moreover, the

effects of inhomogeneous broadening, start-up from noise, coherence development,

and quantum recoil can be important in determining whether and hCw such devices

will operate. We performed one-dimensional classical and semiclassical analyses

of the gain regimes for x-ray free electron lasers. Based on these analyses, we

determined some of the constraints on such devices imposed by effects such as

diffractive spreading of the laser beam, energy spread and emittance of the

electron beam, and transverse variations in the wiggler field. These

constraints are discussed in the preprint reproduced in Appendix D.

07-7
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IV. NUCLEAR SPECTROSCOPY

In two recent papers LPhys. Rev. C 27 (1984), 1229], Reiss claimed that

forbidden nuclear beta decay can occur in the presence of an intense but low .-. -

frequency electromagnetic field. His approach treats the weak coupling to first

order, and the electromagnetic field as nearly as possible to all orders. Thus,

he describes electron states by Volkov wavefunctions, whereas he approximates

nuclear states by the so-called momentun-translation-approximation

wavefunctions. We have now shown by explicit calculation that within this

model, the total beta decay is essentially independent of the external

electromagnetic field. ihis conclusion holds both in nonrelativistic and

relativistic treatments of the problem. Moreover, by comparing the "-• " and

p • A" form of the interaction Hamiltonian, we have shown that the wavefr on

in the mmentum translation approximation is the unperturbed state in thE

Coulomb gauge. This work is reported in a preprint and a paper which appeared

in Phys. Rev. C 29, March 1984. These are reproduced in Appendices E and F,

respectively.

i -.. .
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APPENDIX A

STIMULATED alISSION FIU4 SUR1.ACE SCATIERED IONS

Ahmet Elci
S

Institute for Modern Optics

Department of Physics and Astronomy S

University of New Mexico

Albuquerque, New Mexico 87131

Abstract

We discuss coherent excitation of ions incident on crystal surfaces at

grazing angles and show that substantial gains for soft x-rays can be achieved

for reasonable beam currents.
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A. 2

Coherent excitation of ions by the periodic potential of a crystal was

proposed by Okorokov sometime ago [I] and has been observed by different groups

who passed highly ionized atoms through thin foils L2,3]. The effect arises

from the fact that an ion moving in a crystal with speed v experiences a time

dependent potential with harmonics 0 = (2Tivn)/d, where n is a positive integer I

and d is the lattice spacing in the direction of ionic motion. If v and d are

such that sl matches an ionic transition frequency, then ions are resonantly

excited by the nt- harmonic. The probability that ions are in an excited state

becomes a periodic function of the thickness of the foil [4], which zan be

viewed as a consequence of the Rabi oscillations [1 of ions in their rest

frame. When one goes to the laboratory frame in which the crystal is at rest,

the Rabi oscillations in time become thickness dependent oscillations in space.

The Okorokov effect depends critically on the finiteness of the probability that

ions keep their charge states constant without further ionization or _

neutralization in the crystal.

One can expect the same physical picture to hold for ions scattering from

crystal surfaces at Qrazing incidences. This may be called the surface-Okorokov5

effect and offers interesting possibilities for obtaining stimulated emission of

soft x-rays from ions. One can coherently excite a beam of ions into certain

high lying states by an adjustment of the beam velocity to the crystal

periodicity, and obtain an effective population inversion relative to some low

lying states. For such a purpose, the grazing angle surface scattering geometry .

has considerable advantages over the beam foil geometry. The damage to the

surface resulting from ion bombardment is minimized at grazing incidences so

that the same surface can be used repeatedly L61. Furthermore, stopping powers

of surfaces can be lower than stopping powers of bulk materials, which means

that ions can resonantly interact with surfaces for longer distances than with

foils.



A. 3

+2In this paper we consider the scattering of hydrogenic ions, such as Li+

+3
Be , etc., from crystal surfaces at grazing incidences, and show that ions "

execute extremely rapid Rabi oscillations in their rest frame. We assume that

the ionic beam simultaneously interacts 'th a coherent electromagnetic field

whose frequency matches one of the ionic transition frequencies corresponding to 0

an effective population inversion, and show that the inhomogeneously broadened

gain of the signal can be substantial.

The geometry of the problem is shown in Fig. 1. An ion is incident from S

the left, moving in the z'-direction (primed coordinates refer to the laboratory

frame, unprimed ones to the rest frame of the ion). In the laboratory frame,

the periodic crystal potential can be described by 0

V' (X') = 8(xo - x') Ce (1)i C

Here, xO designates the distance between the c-o-m. of the ion and the surface

"' (xO is negative if the ion is above the surface; x0 is positive if the ion

penetrates the surface, and is actually inside the crystal). G's are the ..

reciprocal lattice vectors. We have assumed that the crystal terminates sharply

* on a plane at xO. This plane need not coincide with the plane of the first

-_ layer of surface atoms; rather, it should be considered as an effective plane S

- where the influence of surface atoms and electrons of the crystal on the ion

begins to be appreciable.
If one goes to the ionic rest frame, V(') is transformed intoae

c
is ranfored ntoa vector

(Ac) and a scalar potential (Va). A is purely longitudinal, and can be
C C

eliminated by a gauge transformation on the wavefunction of the ionic electron,

i(x,t) = expLiA(x,t)] • (-x,t), such that VA (e/hc)-A. One finds that ¢

satisfies the Schr6dinger equation

L ....



A.4

ihia t 0 [(m - eA c) - Ze2Jx1 V1  V1 p (2a)

where

t- -x
-*ii

= o- x)-C e ,Si G z 0 01], (2b)
~G-x

Vl (lX,t) = ey-Ie(xo - X) lsil5  e , sil = 0 • $ 01 , (2c)

and A = yAs cos(ksz - wst) is the signal field. y is the relativistic factor

(I - V2/c2) -  and essentially equals 1 for all v's of interest here. VI is a

static potential that depends only on the transverse coordinates of the ionic

electron. Note that going from the laboratory frame to the ionic rest frame is

equivalent to taking a time average of the crystal potential along the

trajectory of the ion; Vi is this time averaged potential. VI is obtained from

this perspective in Refs. 7 and 8, and the level shifts induced by VI on ionic

spectra in foils are estimated in Ref. 8. Here, however, we will ignore Vi,

assuming that it produces negligible perturbations. For our discussion, the

important term is the time dependent potential V If the basis vectors of the

reciprocal lattice space are G1, 62 and 63, that is G £G1 + Ir2 + nG3 , where

£,m,n are integers, then the harmonics of V11 are given by

yvz• (Zd1 + raG 2 + nG3). In the following, we will consider the case in which

one of the fundamental frequencies obtained from this expression equals or is

near an ionic transition frequency. Specifically, we will assume that only.'-"

n = 1 and n = 3 levels of the ion are involved in the transitions induced by the

crystal, and that an effective population inversion occurs between n = 3 and

-"• ~~~.".. . -. .. -. -........ ,.'..L ,-... '...' . .' • ,-.- . .-.'. ,--, ,. ,. -. . -...- 'i
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n = 2 levels as shown in Fig. 1. One can then ignore all G's in the set sli

except for those which give a constant frequency Q which is either resonant or 0

nearly so with the ionic transition frequency W31. Thus we define the set of

vectors g such that g = X + yG + iYG z and Ig-l = constant = a/v. Ignoring

the signal field for the moment, the amplitude equations in the rotating wave S

approximation are

i(2-W3 1)t
icl00= e Moi0;3Zm c3tm  (3a)

-i(2-W3 1)t .ic .3m :e M oo;3z, clO0, (3b)

where

-ind  
* u - x)eg' U ' ) (3c)

= e~h J d . .n .

and un.m s are the hydrogenic wavefunctions. Assuming c100(O) = I and S

c3 (0) = 0, the solution of (3a,b) is

oo(t) = + 2t - e e /(+ - ) , (4a) S

C39 (t) = (0ir23 - e (2 - 2) Q)
U m1 0 3 m( 4 b ) ..i --

where ;2±(9m) = ('131 - Q)/2 t (W3 1- 2) 2/4 + Q 2 and R 03I is the •
Rim Rim 100;3zm

Rabi frequency.

".. . ..



A. 6

If the ion penetrates the surface and Ix01 x lA > (a B/Z), one canB

essentially ignore the step function in (3c) since u 's are localized to a
n im

radius of approximately (naB)/Z. One then finds

M= e4hyT e (4) t(2 3) + 4)(5a)
100;300 9 9 g• gg-

(P);31m =i- e(2hyg3-)- 3gg2 + 2)(52 + 1)-3Ym((7 , (5b)

ioo;31m 9 m g 1
ge B

x(P) 2e , J_ y, 3

Note that only M~p  describes an electric dipole transition; the other -i-

100;1 0 -"l g-

transitions violate the dipole selection rules since they arise from higher..

order multiple transitions. This is in contrast to the formulation of the -

Okorokov effect in Rfs. 4 and 9, where the dipole approximation is assumed to

hold. In justification of (5a-c), we note that whether one can make the dipole

approximation depends on the ratio of the crystal period to the radius of the

ion's electronic orbital, that is on whether I1l(a 3n/Z) << I. For typical

crystals one can easily obtain igi(a n/Z) 1 even for low lying orbitals. The9 B

dipole approximation breaks down. Incidentally, this fact can be exploited to

populate those states which are not dipole connected to the ground state and

therefore, relatively long-lived. After leaving the surface, the ion remains in

- -~-----~- -~ ~d d~ ~ ,~i dn~~md ~~** -.



A. 7

a superposition of these long-lived excited states with the ground state. This

superposition is stable relative to radiative decays to the ground state. P

If one takes the pseudopotential values of qt+ that are used in structure
g -

calculations LOi, and uses just the smallest and the next smallest g's in the

sums of (5), one finds for a crystal like Si that I I . 1016'10 0; 30 0' 100;K2m "

sec - 0 and 3 0 1017 sec-1 . The resonance condition vz - (G1 + G2 + G3)S100; 310 "" ,

W31 'U 193 eV can be satisfied for a Be + 3 ion moving with speed v t, 109

cm/sec. It follows that the ion can be completely excited after traveling a

"Rabi distance" 9Rm = 7v/121  3 - 30A.

An interesting feature of (5b,c) is that the contributions of different
I4

components are proportional to Y (g). rThere are, therefore, orientation p

dependent interferences amongC 4 components. By varying the direction of the
g

ionic beam, it is possible to pick different sets of g-vectors, and thus obtain

information about different CV components from a comparison of Rabi frequencies
g

corresponding to these sets.

We now consider the coupling of the ion to the coherent signal field and

U treat this coupling as a perturbation imposed upon the evolution described by .

(4a,b). In the calculation of the gain the steps are: a) determine c2 m(t) to

*-first order in As using c3.m(t) given by (4b); b) calculate the transverse

current density resulting from (3zm)-(2ZAn') transitions; c) substitute this

transverse current density into the %i xwell equation for A to obtain a
S

" dispersion relation between a real w and a complex k . The imaginary part of.•° S

k gives the small signal gain for ions moving at a fixed velocity v. Finally, ps

d) multiply the resulting gain with the probability distribution of ion

velocities, 0io(v), and replace o2 by vli.gl. We assume that the width of
ion

p ion(v) is sufficiently narrow as not to effect the overall choice of the set of

.. g's, and integrate over the interval- w< v co. In the limit that the

.............,.. ... ... ... .• 1.9?°
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lifetimes of the states in the n = 2 shell go to o, the resulting

inhomogeneously broadened gain is given by

2T2he2P N. 2 + Z D"P (v"acs ion km z ~inVm )  (6a)i.
m2 c £,c0 m=-£ [( - w3 2 ) 2 + 1 m

where N. is the density.of ions, P is the probability that the charge state
ion Cs

of ions remains unchanged, and v is a tuning velocity given by

[ ' S£ W + 1] (6b)

V 1 Ls 32 - 32 + 31]

D zm is a coefficient related to the momentum matrix elements,

Dm = I£'m' £"m ;3"m" 'm';3m l00;3km 100;3Z"m" (6c)

where

= " .(-iV)u
2Zm;3t'm' f 2m'm'

-(Z/aB)5m,( 6 m, i + 6m, _i1( ,,,iTi + 6£, 6 ,2 ).

(6d)

" Here n, 2 1 3 " 32 5-10 7.6xi0- 3 and r12 = 21" 33 5-10 0.72 are pure

numbers Ellj. A representative gain curve vs. w is depicted in Fig. 2 just for

one particular (Zm) inthe sum (6a), and for a gaussian probability distribution

of average velocity v 0 and width Av: o)(v) (AvV'-) - expL-(v-v0) 2/Av 23. As

seen from the figure, the gain curve has double peaks surrounding the exact

resonance at wS = "32' where it vanishes. is the sum of several such curves
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which have differing heights and widths, but always vanish on exact resonance,

s =32

Mnother interesting feature of .9 given by (6a) is that instead of the

usual population iiiversion factor (Nupper - N lower), it has an effective
population inversion fRam iis -/E32)2 + Q2 ] . Thus all ions .
* ~~~~o inerio fato L. 2 ,[32 ~ RZm

participate in the photon emission and absorption processes. The degree of this

participation is determined by the coherence of ions and the corresponding Rabi

frequency caused by the crystal.

FA Going back to the Be+3 example, one finds ( assuming Pcs - .5

C (N. /1012 cM- 3 )x(v/jv)xl0-4 cm- 1 for a signal of 30 eV. Thus, for
S ion

Av/V 1 i0- 4 and an ionic current density j.ion 4.8 ampere/mm2 , one has

9 , 1cm 1.
s

As an ion moves inside the crystal or on its surface, it loses energy to

the material electrons, and its c.o.m. slows down. This can cause the ion to - S

move away from the resonance with the crystal field. Scaling from the stopping

powers of protons in bulk materials [12], one finds S 109 eV/cm for Be+3 with

v ' 109 cm/sec for a Si target. For grazing angle scatterings one can expect S

to be lower since the number of material electrons may be depleted near the

effective plane at x0 due to the formation of inversion layers further down in j

the interior [13j. It is also possible to choose the beam direction in such a

way that ions can move between the crystal planes, avoiding heavy concentration

of material electrons. Such a channeling of ions can decrease S by orders of

magnitude L14]. kbr an ion moving the Rabi distance Z , the minimum energy loss 0
R

is Eloss "S'R . Taking S ', 101 eV/cm for channeled ions and z R 3 - 30A, one
finds A E /Eio n  10-6 - l0- 5 for Be+ , which is quite small.

loss ion
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FIG JRE CAPTIONS

FIG. i. The schematic of the grazing incidence surface scattering.

FIG.2. The gain for a particular (2m) vs. S (ws 32(Izgv) - . For illstrative "

purposes, 6R=0(Iz-gjAv) -  and c3v01z-)(zgv) - l are taken

to be 3 and l,respectively.
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SOFT X-RAY ANPLIFICATION BY IONS SCATTERING
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abstract

We show that hydrogenic ions scattering from antiferromagnetic surfaces execute

rapid Rabi oscillations in their rest frames, which can be used to amplify X-rays.
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I. INTRODUCTION

The subject of the present paper was inspired by the free

electron lasers. In free electron lasers, the laser action, or

amplification, occurs at the wavelength X = 2q /y , where Xq is the

wiggler wavelength of the magnetic selonoid and Y is the ratio of the

electron's energy to its rest mass energy [1]. In principle, one can -

decrease X either by increasing the electronic energy, or by

decreasing the wiggler wavelength X The latter is not very

practical with the mechanical systems that are used in free electron

lasers. There are, however, systems which are periodic on atomic

scale, and which might be used as short wavelength wigglers for

electrons or ions. A particularly interesting idea is to use

antiferromagnetic crystals as wigglers for ions. These crystals have

strong internal magnetic fields that are periodic with some lattice

periodicity [2-4] and can be used to excite ions coherently. Excited

ions can then decay radiatively and thus convert the virtual photons

of the material magnetic field to real photons, just as in the case of

free electron lasers.

In the following we discuss the physics of this problem in detail :

for hydrogenic ions. Specifically, we consider a beam of Be" ions

scattering from the surface of an antiferromagnetic material like FeF2

or MnO. Be+3 ions penetrate just below the surface of the material,

travel for some distance L, then come out. They simultaneously

interact with a soft X-Ray signal of frequency hw S 30 eV which
S . .

matches the frequency w32 of the n-3 - n-2 transitions of Be 3. In

Section II, we first consider the magnetization fields inside an

. . . . . . . .. . . , . . . . . . ,. . . . . ,. , . , .
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antiferromagnet and deduce the general form of the fields from a

simple argument. We then obtain a simple set of equations of motion

for the ionic amplitudes from the Schrodinger equation in the rest

frame of an ion. These equations show that ions in their rest frame

execute Rabi oscillations [5] between the states n=l and n=3, if the

ion velocity is properly adjusted. The Rabi frequency R is

proportional to B0 , the amplitude of the magnetization of one of the

sublattices of the antiferromagnet, and to v, the ion velocity. Ris

on the order of 4x10 13 sec -1 for v-10 9 cm/sec, which is nearly four

orders of magnitude larger than the spontaneous radiative decay rate

of the n-3 states of Be+ 3[6]. Since ions are actually moving with

velocity v, the Rabi oscillations in the rest frame become spatial

oscillations in the lab frame [7]. If L designates the spatial
R

*" interval for half a Rabi cycle (i.e., L is minimum distance required
R

for an ion to travel in the material in order to get the ion fully

excited into the n=3 states, if it is initially is in the ground

state), then LR is on the order of 10- 4 cm. We also give a detailed

discussion of the validity of the model. In Section III we calculate Dp

the gain of the signal field in the weak signal regime. Due to the

coherent excitation of ions, the expression for the gain differs from

the usual small-signal swept-gain [8], and has a number of novel

features. It turns out that only for a very narrow region of detuning

between w and W32 can one get finite gain. The maximum gain is about

SS1 0 cm -Ill the Ionic density is on the order of 1014 cm-3. Section iv

gives a further discussion of the results and our conclusions.

i !i~~i!!p



B.3

II. ANTIFERROMAGNETIC SURFACE SCATTERING

The schematic of ion scattering from an antiferromagnetic

material is shown on Fig. 1. A beam of Be" 3 ions grazes the surface

of an antiferromagnetic material at an angle ti typically less than

0.50 [9], penetrates the surface, and, after traversing the material

for some distance L, comes out. Simultaneously, the beam interacts

with a soft X-ray signal of frequency hwS n 30 eV, which corresponds

to the transition frequency between the n-3 and n-2 levels of Be 3 .

This is the signal that we want to amplify. The signal propagates in

the same direction as the ion beam. In this section we analyze this

problem with the aid of a simple model. We first discuss the

description of the fields of the antiferromagnetic material, then
+3

write a simple set of equations of motion for Be 3 ion and explore the

implications of these equations.

An antiferromagnetic crystal is composed of two interpenetrating

identical sublattices which are shifted relative to each other by some

spacing d. In each sublattice, spins are localized at the lattice

points and are parallel to each other; however, they are antiparallel

to the spins of the other sublattice. The vector potential induced by

the intrinsic magnetic moments of these spins has, therefore, the

periodicity of the sublattice and can be written as

4. (2.1)A' (x')= e(G)
M

G- ..
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where G refers to the reciprocal lattice vectors of the sublattice.

The primes are meant to indicate that these quantities are in the rest

frame of the material medium. The presence of a surface breaks the

translational symmetry normal to the surface and modifies (2.1).

However, this modification is relatively simple once one has an

expression for A(G). To see what the form of A(G) is, we use the

simplified picture of rigidly fixed spins. Each localized spin then

gives rise to a magnetic dipole field, the superposition of which

yields the overall vector potential:

~' ~I=g ~~Ux(x R) - x(x'-R-d)
Mx =sPBE R 3 x -R-d1 (2.2)

S

where gsis the gyromagnetic ratio of a given spin, B is the Bohr
B

magneton, and

0

R=Za+mb+nc Z,m,n=integers (2.3)

are the lattice vectors of one of the sublattices. P designates the

direction of magnetization of this sublattice. The Fourier transform
of °'. -a b w it a

of A' (x') can be written as 2j"i[i

S

". S °°

-')'' ./ / . ..'---."- '. -. " -' '-':.'''. .'i...' .":" ") " -' .".'- -:).2." "- .i? "-;-. '-.).) -i--'-" .---. , -?.. •. - ' .'. - iS -
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4.x.

A M (q')=fd'r e -i ' A M (x' _

=(V/N) (7e - iq'  R ('q),

R (2.4)

where V is the volume, N is the number of the sublattice points, and

A(q) is defined by

. .4

-. - 2 1
X(q)=2TN(l-e - i  (Vjqf2) { +[(_-) (z.q)-(z-p) (E_-q)]

-E:_[(C+. w)(z -q)-(z -1) (F-+ q ] .,

+z[ (+ w (E_' q)-(E_.1)(E q)] }

(2.5)

and

E+=x ±iy' . (2.6)

When the number of sublattice points N is sufficiently large (N-),

the sum over R gives

.. . . . . .. . . .. . . .
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-+ - q,G

(2.7)

- 0 4
Inverting the Fourier transform, we then find

q A-qx

* e 1~x' ~(2.8)
G

Consider now the special case in which p. is along x, the reciprocal

lattice is cubic, z coincides with one of the lattice directions, and

d is midway along R3 such that-

G G3 (-) (integer)- i- (2.9)
3 2d.

The factor

- iG~ n (1 (2.10)

is nonzero only for odd n, and (2.8) becomes
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G 4.Am ' (x')= 16,rgsUB NV- E. e._ - L

G

x K n G2 cosK z'

n= 0 -y' 22sinK z' -iz' 2 2

(K +G2) (K+G 2 ) (2.11)

where

K = (2n+l)L n d '(2.12)

G a b b m,Z=integers. (2.13)

Let the ion beam propagate in the z-direction with a uniform cross

section. A given ion then samples a vector potential that is

approximately the average of (2.11) over the transverse coordinates.

When such a spatial average is taken, only the G- 0 terms survive in

(2.11), and the vector potential becomes

^ sinK z'
(')=-Y'B0 -n=O K (2.14)

where B 0" 16-Ng B /V. The corresponding magnetic field is given by

.. ... . . .. . . .......... . .--. ' .......- ... ,, -"
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Goo
BMn xBO z COsKz' (2.15)

When a surface is introduced, the basic modification occurs in

(2.7). Let the surface be the y-z plane. We separate the sum in

(2.7) into two parts, one part is a sum over the sublattice points on

the y-z plane and the other part is a sum over the sublattice points

along the x-direction:

Ze - iq 'R =(ne -i(mbq 2+2ndq 3 ) (E- iqlaRm ,n)( . e)

=(NsZ2G q'Gqq .. °--,
G2 G 3  q 2 1G2 q3  3(2.16)

where N is the total number of sublattice points on the y-z plane and

p1 (qj) is the spin line-density fluctuation normal to the surface.

Note that N pl(O) is the total number of sublattice points. Eq. (2.8)
S

is now replaced by

A~i(qlx'+G 2 Y,+G3 z,)[1 (l) -...-.-,AM ' (x')= 7.e 2yG ,G?..-.-•
qlSG3 I(0) ]  (ql' r, •G"

(2.17)

If one ignores the spatial variation in transverse coordinates and

takes an average over them, (2.17) reduces to (2.14). If the beam is

of small cross-section or of small thickness in the x-direction, then

".-..•..- " -
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transverse variations are important and (2.8) and (2.17) give

different results. In the following we ignore the transverse

variations in the vector potential and use (2.14). This simplifies

the algebra and allows us to concentrate on the essential physics of

coherent excitation of ions.

In order to couple the electron of Be + 3 to the antiferromagnetic -

vector potential, one needs to transform the field given by (2.14) to

the rest frame of an ion moving with velocity v in the z-direction.

In the rest frame of the ion,

AM(x)=.yyBo lO kn sin(kn z+wnt) (2.18)

I

where

2 2 -1/2y=(l-v /c

kn=yKn ,

W=yvK
n n

Thus the ion experiences a time-dependent field in its rest frame,

whose harmonic frequencies can be matched to one of the ionic

transition frequencies by varying the beam velocity. In particular,

if one matches one of w to W3 1 , the transition frequency between the

ground state and the n-3 states, then the magnetic field of the

• . A . o

".'i'-i'.-.-i-.?.--.'.-i ' ." .-"--. "--'.-.. "'.L'i ...-.'i-.-..-.................................................'....-"...'........'..-...--...-."-...-".--.,"._....."-.
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material can resonantly pump the ions to the n-3 states. The ion then

executes Rabi oscillations in its rest frame. The frequency matching

- w 3 1 requires that
n0

W 3 1 031

+ K 2  + -- (2n+1)2 (2.19)

43

For Be , - 3xl0 1 7sec-1 . For an antiferromagnet like MnO, d - 4A.

Substituting these values into (2.19), one finds v(n-0) - 3x10 9 cm/sec

and v(n-l) - 109 cm/sec, etc. Finally, if the matching conditions are

met for the beam and ions are coherently excited to the n-3 states,

then some of these excited ions can decay into the n-2 states by

emitting hu 3 2 - 30 eV photons, which will amplify the signal. It is

clear that the proposed scheme uses the same type of excitation

process as in the Okorokov effect (7,10-14).

In order to simplify the equations of motion we assume that

pumping is strong but that the signal is weak. We first consider the

Rabi equations for the n-I and n-3 states coupled by the material

field alone. We then use the solutions of these equations to

calculate the amplitudes of the n-2 states which are coupled to the

n-3 states by the weak signal. Let the ion wave function in its rest

frame be

-iE t
n~ i te n m (.X) (2.20)4(x,t) = Y c (t)c Uni (2.20)
ntmn nim

9 -

. "-
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where u(x) are the hydrogenic wavefunctions for Be'* We assume

that the frequency matching condition is satisfied only for the nth

harmonic of the material field. Neglecting the lifetimes and the

counter-rotating terms, one then has the Rabi equations for n-l and

n-3 states of Be+3

-i (w 3 1-w )tdt C1 00  = iekyB e n Py(100;3'm'Ikn_ 3 'm (
mcn Z'm' ( .

dieYB e1WLn Jt

dty n
n 

(2.22)

where

-k. -x• (n~~n° 'm '  k] dx e Un (-.) ,.P (nm; n Z Ie U (-f n ' " (2.23)

U
We have kept just the p.A terms in the above equations. Performing

the indicated integral in (2.23) for n=3 and n=l states, one obtains

the matrix elements

P (3Zm;100O1k:) (5 )[6(F Ma B m,1 Im,l ,l )

" iQ - i~)

(2.24)
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where Z is the nuclear charge of the hydrogenic ion and a Bis the Bohr

radius. The other quantities are defined as follows:

4Z (2.25)
v16:2 +9k

2 a B2

F 1~ 9bW
1 9 V~~ (+~)" £ r(Z+,) r(z+ 1) 2

(2.26)

= ~ ~ 1-~ 2  (6~'B)~ (v~1)J(2.27)
40,~'2

Assuming that the ions are initially all in the ground state (i.e.,

c -) 1c C - 0 at t -0), the solutions of (2.21) and (2.22) are

C1 0 0 (tJ= ~ ~ t-~1t) e (2.28)

L3Z (t) =P (3rn.;100 1-k :)e -e (2.29)

n

wh er e

. . . . .. . ..
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W 31 -n W3 -

= 2 + (2.30)

QR is the Rabi frequency given by

eyBoD 0  eBoDoyv (2.31)

R mck n mCW 3 1

Do [ F ( ))2 + (F( ))2]!
a B n n (2.32)

When w 3 1  wn exactly, the populations of upper and lower states

oscillate with the Rabi frequency QR*QR depends linearly on the .

amplitude Bo of the magnetic induction of the material. For

antiferromagnets FeF 2 and MnO, B- -'2x 10 7G and 5.4xl0 6G, respectively

[15]. Taking B0 - 5x10 6G as typical, and assuming that the zeroth

harmonic w0 is matched to W31, we find D, 0 9x10 7 cm-1 and

R 8.9x1013 sec-1 for Z=4. Thus if the ion moves for a distance of

L R - rv/2R in the material with constant velocity v - 3x109 cm/sec,

then the population of ions, which is initially in the ground state,

is completely excited to the n-3 states. Table I lists some of the

relevant numbers for matching 31 to some of the harmonics.

It follows from (2.24) that only certain states of the n=3 shell

are coupled to the ground state. These are the states with Z-1 and

e=2, and m-±l. The coupling of -=2 states obviously arises from

higher multipole transitions than the dipole, since the change in the

. .. , . • . , - . . -. . . . . . .
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angular momentum At-2. However, Fj(:) which corresponds to .'P=l in

(2.24) also has contributions from the higher multipoles. To be

precise, the electric dipole transitions correspond to the limit -- 1

of P In this limit the sum in (2-26), as well as F2 , vanish, andy

the first group of terms in (2-26) yields Fl(l) - 0.1. The importance

of the contribution of the higher multipoles depends sensitively upon
S

the size of k n via the relation (2-25).

Let us now consider the amplitudes of the n=2 states. Let the

signal field be described by

A S yA cos(k z - w t) (2.33)S S S

If the lifetime of the n-2 states is F2, then

eAd s i (S32-,S t (2.34)

,mP y (2m;3Z m 1-k sZ)C 3I'm'

Substituting the solution for c3Z,, from (2.29) and integrating the

result (assuming c- ,=O at t=0), one finds

- ~. . .. . . . . . . . . . . . . . . . . - -- . ... .-. -- . -.-
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C2 Zm~t m2c2(Q -Qj )k nm y z)JY

W3(+2 -w 3 2 +w )t

(2.35)

We note that k Sis at least two orders of magnitude less than kn and

therefore, one can let k SaB -0 and use the dipole approximation in

the evaluation of the momentum matrix element with k .In this limit,
S

P Y(3Zm; 2Z Iml 0) a B 6m1,06m,1 + 6

Zx [6' Z' Z~0 i z2 (2.36)

where r11 and r 2are pure numbers given by
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213 32 -3

0= 7.55x0

- S

18 3
2 S 0.72. (2.37)

It is worth pointing out that the solution (2.35) indicates a Raman
type coupling, since the amplitude is proportional to A A as in the

M s

Raman scattering.

In the preceding discussion we assumed that the velocity of the

ion remains the same as at the time of the entry of the ion into the

material. This is of course a gross approximation. As soon as the

ion enters the surface region, it begins to lose energy, particularly

to the electrons of the target material, and slows down. We can

estimate the error involved in the assumption of constant ion velocity

from the stopping power of electrons in solids, which depends on the

speed of the ion, its charge number Z, and the charge number of the

target atoms ZT (16-18]. The stopping power scales as

S(:zTV) (TV *  (2.38)=~1 Z-sZV .C -VI-:1.

where S is the stopping power when the projectile is a proton, and
p

Z*(v) and Z (v) are the effective charges of the ion and the proton,
p

respectively, in the material [16]. These effective charges arise

from the screening effects due to the electrons of the material and



B.17

are dependent on the projectile speed [20-22]. Let the target atoms

2
be Mn and v - 10 9 cm/sec. For this speed S 10-14eV.cm /atom,

p
Z*/(ZZ ) 0.6, and therefore, S : 6x10 - 1 eV.cm 2/atom. The number of

target atoms per unit volume in MnO is on the order of N T 1022 cm - 3,T

which translates into an energy loss per unit length N S - 9x10 8
T

eV/cm. If the distance travelled by the ion is LR - 0.8 um, which is

the minimum necessary distance needed to get the ion completely

excited into the n-3 states, then the total energy loss is

6E - NTSLR: 50 keV. The relative decrease in speed is given by
-2

6v/v = 6E/2E - 4x10 . These numbers show that the constant velocity

assumption is not too bad, in the sense that the error in velocity is

on the order of 4% per Rabi cycle. We should point out these are bulk

estimates, and are therefore likely to be much larger than the

"* corresponding surface rates. As the ion slows down, W31 and w becomen

* detuned. In terms of the stopping power, the detuning from the pump .. -.

frequency is given by

vN L k S

A = kn 6V = T R2E (2.39)

* Estimates of hz 0 and hA1 are given in Table I.

Another important assumption in the above discussion is that Be 3
+3

ion remains Be inside the material medium, that is, it keeps to its

-. original charge state. There is some conflicti-q opinion and evidence

on the states of an ion or atom while it travels inside a solid

. . . . . . . . . . . . . . . . . . . . .. ..-
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material (23-27]. The projectile may lose its original electron and

be completely stripped, or it may capture electrons, losing them only

while leaving the solid material (21]. At any rate, the charge states

of a projectile may not be entirely determined. In view of this

situation, how reliable is the above assumption and the consequent

analysis? There are three possible answers to this question. First,

the charge state of the ion is clearly dependent on the ion speed. At

low speeds the charge state appears to remain unchanged with

relatively high probability (24]. One can, therefore, reduce the

ionic speed by matching the relevant ion transition frequency to a

higher harmonic of the material field. There is probably some trade

off point in this procedure, since the Rabi frequencies of the higher

harmonics of the material fields are lower, leading to larger energy

losses. Second, even for swift ions, the ion spends some of its time

inside the solid in its original charge state due to repeated capture

and loss of electrons of the medium. From the cross sections for

electron capture or loss (14,28,29], one can estimate the probability

of the Ion being in its original charge state, and accordingly find

the expected values of the desired quantities from this probability.

This picture of ions being partially in their original charge states

is supported by the correlations observed between ions and a coterie

of electrons that are emitted secondarily (30]. Finally and third, in

the treatments of the Okorokov effect, one uses the picture of the

projectile being in its entry charge state (7,10,11]. one then
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calculates the probability of excitation of the projectile as a

function of its speed. The model apparently works, and there is a

fair agreement with experiment (12-14]. 0

The cross sections for the electron capture and loss are on the

order of a C a 10-19 cm 2 [14,24,28]. The target mobile electron

density for MnO is on the order of N 1017 cm - 3. It follows that
e

the probability of the ion changing its charge state is roughly

(a C+ CY)NeLR - 10-6 per half Rabi cycle.

III. GAIN FOR THE X-RAY SIGNAL

In order to calculate the gain for the signal field, we follow

the well known procedure used in traveling wave amplifiers and free

electron lasers (31]. We calculate the transverse charge current
iW t

* density of the ionic electrons which oscillates as e s, and

substitute it into the wave equation. The wave equation yields a

dispersion relation which requires either temporal or spatial growth.

The latter yields the small signal gain for the X-ray signal.

The n-3 n-2 transitions cause a particle current density that

is given by

he - 32t 

-

Jy(ksZt) = m ,mzmC2zm(t)Py (2m;'3Z'nm'O)c 3,,(t) (3.1)

.-. . -. --. .-i --. . .. ... .-.--__ _ _ _i
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It follows from (2-29) and (2-35) that the component which oscillates

Sas e is

(lS)  e h-Bo0A SDI4
- +i0

Y m4 c3 (Q+_-) 2 k 2 + ir, S1 - 2 +WS+
n Ql -m32'-s' 2- 32 s.

(3.2)

where

D = .zm£', ,,,,P y (2Zm;3Z'm' IO)Py (3Z"m";2Zm10)

× P (3Z'm';100-knz)P (100;3"m" lknz) (3.3) .f*-Z

n y n(3)

Using (2.24) and (2.36), D1 becomes

D = (- [W )(Fl(f ) +2F( (3.4)1 aB 11n 2..n

s ) is the transverse current density of just one ion. If there are

N ions per unit volume in the ion beam moving with velocity v, then1 0

the total transverse charge density component is given by ej (S)N., and

the wave equation becomes

0 :

" - .. ' . . '" , -" . .* S '. . o - " •• . - - .° ° - % • . . . . . ' -.- ,o - .. o - .• . . • . ' . o . , J .
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32 21 (4-eN) ik z -iw t
122 a t 2 S iy (3.5)""-----A"c}"3" e (35

s S
where A s y e e is the positive frequency component of the

signal. Performing the indicated operations in (3.5), one obtains the

dispersion relation

2 4 2, 4 + r

2 4,e oi1 V B-- 0 i

s 2 __ + s 2 1-2 12
-k k-- = - 0 ( Q -W 3 + S + ) + -'

(3.6)

For an amplifier, one lets the frequency be real but allows the

wavevector to have an imaginary part in order to determine the growth

or the decay of the signal in space. Thus, let

U|

k s . (3.7)
S C

Here a positive g means that the signal wave grows as exp(gz) and thus -

g is the gain due to the ions moving with velocity v. g is generally

quite small compared to /c; therefore,

Qi

*6'

.. . . . . . .. . . . . . . . . . . . . . . . . .
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2 2 0
2SS SUs2ig s C 2!g sks 2 c- - -  2 c ' .- .

C C (3.8)
I.-

and

it' 4 Y2B 4  [ 4 I
9 s n =. - 2 I 24 13 + -2I +W 2+ 1 .2 (Q_-W +W 2 (3.2

w -m c (Q -P Q+ ) S 4 2 32 + 4 2  (3.9)

In the limit r2  0, the terms bracketed are reduced to a pair of

delta functions:

2, 442, 4
2 -24e y B2NiD 1g= [u* 3 -'+W S% +5 (P -W 32 +W ) ] •..

wm4kc 3 (2 -2 (3.10)WS n.

In an ionic beam, ions will in general have a dispersion of

velocities around an average velocity v 0z. Ions moving with slightly

different velocities will be differently tuned to the material field

and contribute to the overall gain with different strengths. Assuming
3•

that the beam of Be has a narrow Gaussian distribution of velocities

in the z-direction described by

= exT 0
1 VVo) .- ,

2- (3.11)

the net gain is given by

,V - .. . '-.0

*-1-i "-
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Ti
4-00g= PCS I dv g(v) pi(v " >'

(3.12)

where we have multiplied the average over the velocity profile with

s the probability of the Be ion being in the charge state +3

(roughly 0.5). If r2 < knAv, one can use the simpler form of the gain

given by (3.10). The integral in (3.12) is then readily done and one

finds

2 422 4
4r )1e y BoNiDlpcspi(vt)

g, (3.13)
3k 4 3 2+ 2W k m c [(W s -_ ) R 0
n S 3.R

where vt is some tuning velocity given by

2 - 3Q12
s 32 - R + 31"vt= +R k -3) k -

R k (W k(3.14)

The expression (3.13) for g can be put into a more recognizable

form in order to compare it with the usual small signal swept-gain

[8). Define an "effective" Einstein A-coefficient

2 2 2
2wUf/2 eIDPcsA s ef f  1C
3- Zeff =  (3.15)

3)ic m 3 2D 0

and the Doppler broadening half-width

(3.16)
A D (knAV) 2/'f-n2

D n

.. . .. . .. . .. . .. .. .. .. .. .. .. . . . ........ ...

.............
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(3.13) can be written

(knt_0 24Z2:
3 Zn2 1/2 2 ,Aeff, (k v 0 ) 4Zn2
= 2 (---) Ni n expn- f , fl

7TSY-D (ws-W 2 2QZexl (Aw)2 j
32 R D

(3.17)

where w nI kv 0 . It is seen that (3.17) differs from the usual gain
n n

expression in two ways. First, instead of the usual population

inversion factor AN - Nexcite d -Ngroun d , (3.17) has a density factor

that refers to the total density of the ions modulated by the Rabi

frequency and the detuning of Ls from J32. In other words, the entire

collection of ions participate in the excitation and emission

processes. This is the origin of the phrase "coherent excitation."

Second, (3.17) has a Doppler factor that has complicated ws -dependence

and goes to zero exactly at w- w32. Thus the following

correspondences exist when compared with the usual gain:

(k v -0 2
n t wn) 4tn2 (W W2 4Cn2(xD)2 ] p exs 32

D(AD) 2""
DS

,) R N(3.18) :
2 (NexcitedNground)

s-32)2

.......................
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The fact that the excitation is coherent is quite important, since

essentially all ions in the beam contribute to the gain and the

question of population inversion does not arise. Instead, the

question becomes one of tuning relative to the Rabi frequency, which

determines the effective ion density that contributes to the gain.

Since this tuning should be achieved with relative ease, coherent

excitation has a significant advantage over the conventional

incoherent excitation of a laser medium.

An interesting feature of (3.13) is that the gain scales as some

frequency detunings per unit Rabi frequency, and the maximum possible

gain is independent of the size of magnetization. To be precise, we

can normalize the ion beam density to N 10 14 cm-3 and write g as ...

N. v 22
9 - ) () ex(- - ,(3.19) . .

w262

where
4 3/2e 2N 4

go =  e iN 1 PCS

m v ck w (3.20)
0 ns

6= s-W32 /-R (3.21)

6p =( 3 -k nV 0 )/2 R (3.22)

II

. .. .. . . -
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and

w=k Av/P R  (3.23)

As seen from Table I, g ' 10 - 4 cm - for low harmonics. Due to
0

slowing down of ions, one can expect 6p to be on the order of An/P.R

which is a number generally larger than 10. Because of the factor

(V0 /Av), it is desirable to have as small (Av/v ) as possible. By
0 0

pushing to the limits of the present ion beam technology it is

possible to get a high velocity resolution on the order of

(V/Vo) '. 10 - 5. w is then 0.04 and 0.15 for the zeroth and first

harmonic frequency matching, respectively. Clearly, the maximum gain

is obtained when 6 is approximately given by

1 12+ 1
6M= _ 26p+ 6+p 1 6 (3.24)

which makes the exponential factor unity. For 6 - 6m . .

N. 6 + 4 2 / "
_- ) ( - ) C . )/ -2

=go 0 N2 v

N. 0 (1- 12

p0 6 (3.25)

Thus, for N - 10 cm and .v/v - 10, 9 10 cm 1 which is as f g

significant gain. Note that the gain is confined to a narrow tuning.-.'..

S< <<

-.-.-.-- -- - - - - - - - -
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range between w and W3,. Near 6 the exponential factor can be
S m

expanded as

6 4
p 1 2

exp -- (3.26)
w p

It follows that for 6 - 6 (w2/62 ) which is on the order of 10 - 4 or

m P

less, g is substantially reduced.

IV. CONCLUSION

With slight modifications the preceding analysis applies to

non-hydrogenic ions and neutral atoms. We therefore conclude that

ion-antiferromagnetic surface scattering is a promising and quite

general scheme for X-ray amplification and X-ray lasers.

Note that for N - 1014 cm- 3 , the charge current density of the

ions is JeINiv Z . 6.5xl04 amp/cm2 for v=101 cm/sec. Or in terms of0

the power contained in the ionic beam, P. - iN.Mi V 3 
% 9x104 MW/cm 2 .1 1 ion

Clearly, in an actual experiment, the particle beam would have to be

pulses of a nearly neutral plasma beam.

Admittedly the beam densities required to achieve 10 cm-1 are

high (321. However, presently there are sources for Li ions that can

yield such high densities (33]. Furthermore, ion beams can be focused

on the surface to obtain high densities (34]. The experimental -

difficulties may lie with combining a high velocity resolution with

high densities.

Another possibility is to increase the effective range of

interaction L between the signal and the excited ions. The actual
ef f

. ~ ~~ ~ ~ .. .° .. . . .|

" . -L , : . i i ' . .- i i . " - . .. . -. . .-- ,. - . .... - .- ' . -.• • '
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g L ._ 0

amplification of the signal amplitude is given by e , If L iseff

sufficiently large, much smaller g can be tolerated to obtain

significant signal amplification. L can be increased in a storage

ring configuration, where both the particle beam pulses and the X-ray

signal repeatedly scatter from surfaces that are placed in a circular

fashion (with a large radius to allow for grazing angle scatterings).

Between surface scatterings, the velocity spread of the particle beam

can be adjusted by means of external fields.

Finally, the preceding analysis shows that the antiferromagnetic

surface scattering is an extremely efficient pump mechanism to create

an inverted population. Q R which determines the rate of production of

the excited states is four to five orders of magnitude larger the

radiative lifetimes of the relevant excited states.
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FIGURE CAPTION 
9

Fig.1 The schematic of the antiferromagnetic surface scattcring.
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Magnetic surface-induced spin-flip transitions in singlet 02

I A. Elyi and M. S. Zubairy
Institute for Modern Optics, Department of Physics and Astronomy,

University of New Mexico, Albuquerque, New Mexico 87131

P. Avizonis and M. 0. Scully
U.S. Air Force Weapons Laboratory, Kirtland Air Force Base, Albuquerque, New Mexico 87117

-m (Received 22 September 1983)

We show that a sizable electric dipole moment can be induced between the -1, and 'A, states of
02 when oxygen is placed in an environment of particles with spin 2L.

I. INTRODUCTION ous transition rate of about 102 sec - 1, which is nearly 6 0
orders of magnitude larger than the corresponding rate for

In diatomic molecules formed by the group-VI elements isolated 02.
(e.g., 0 2,S2 ,SO) and by a combination of group-V and
group-VII elements (e.g., NF,NCI,PCI), the spin selection II. INDUCED DIPOLE MOMENTS

a rule AS =0 leads to highly metastable states which can be

very useful for high-power laser systems. A particularly Consider the situation illustrated in Fig. 1. To simplify •
well-known case is the 1A state of oxygen molecule. Ow- the problem, we take into account just two of the valence
ing to spin and parity symmetry,1 its decay to the ground electrons of 02. These electrons are coupled to spin---
state 31i is highly forbidden with spontaneous decay rate particles at sites R) (.= 1,2 .... , N) by means of magnet-
2.6X 10- 4 sec-'. 2 This fact is used in oxygen-iodine ic dipole-dipole interactions
lasers to store the energy in the 'a state of 02, which is N
then collisionally transferred to atomic iodine via the reac- VN2gy' 3 6j(R-)
tion 0 2(A,) +I( 2P 312 ) -. O2('7 - ) +I( 2p,/ 2 ). Radiative X=1 i=12 I R0-§i I
emission takes place on the iodine through its decay back x '.-(R;Li- )
to 2p,/ 2, which is a magnetic-dipole-allowed transition
with a spontaneous transition rate 7.7 sec-1. 3 The fre- -
quencies of 'A,-31- and 2P,/ 2-

2P3/2 transitions match, (1)
* which makes it possible to resonantly transfer energy be- where is the Bohr magneton, JT are the Pauli spin

tween 0 2 and I. In practice it is difficult to find such whr Di h ormgeo,4 r h al pn. •mteeng an rs for In atier itstdifclt sstos f in ch operators of the external spins, and g is their gyromagnet-
matching partners for other metastable systems which ic ratio. 61 and 62 are the Pauli spin operators for the 02
might have applications to high-power lasers. For this electrons. In the following, we assume that the external
reason, as well as to avoid losses involved in collisional en- spins and 02 are fixed in space and ignore all other in-
ergy transfers, there has long been an interest in obtaining sp ins betwe the tn systems.
radiative emissions directly from the excited metastable teractions between the two systems.
system itself. To achieve this it is necessary to break the To first order, the perturbed states of the combined sys-
various symmetries of the metastable system. For in- tem is given by

stance, the parity symmetry can be broken by applying (a',M'J VIa,-M) .
static electric field or nonresonant radiation, or by means aa, vEa + Wf - E,. - fW,•. -.
of nonresonant collisions with another molecular or atom- M'*M
ic system. 6 On the other hand, breaking of the spin
symmetry requires application of either spatially varying (2)
magnetic field as in a Stern-Gerlach device, or a direct •
spin-spin coupling to another system.

In this paper we consider the latter possibility for the 2 ""-
singlet oxygen, where the electrons of 02 are coupled to a
set of external spins through their internal magnetic mo- .
ments. This situation can be realized by putting 02(0A. )  a
in contact with a magnetic surface as discussed in Sec. III. 0
By means of a simple perturbation analysis, we show that
both parity and spin symmetries are broken and that an
electric dipole moment is induced between 'AF and 3I; .
which is on the order of 102 D. This implies a spontane- FIG. I. Diagram for the notation of the coordinates.
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where a,M) = j a > ® 1 M), j a ) and E. designate the unperturbed states and energies of 02, and I M) and W 1r ' the
unperturbed states and energies of the external spin system. Each M refers to a set of N parameters,
I M) = Ist ts . SN ) where sx can take on only two values ± 1, corresponding to spin up and down at the X.th site. It
follows from (2) that the induced matrix elements of the dipole moment operator 15oP= -e(3,+x 2) are

y~,M'D '' ''6~ (a,M I i5'Pla,M)(a"M I Vla',M) +(a,M IV la",M)(a",31 I BoPja',M)1
vaa I D I I E ' E-Ea' " +

(3)

Because of the form of the operator D op, the sums over the intermediate states can be performed in an approximate
way as follows.7 Let us define

(a,M V la",M)(a",M !exp[-i('t 1F,+ 2.F2)] 1a',M) (4a)
,.. E aE.,

T( ,-)= (a,M exp[ -i 1 ',+ 2-F"2)] I a",M)(a",M I V a'.M) (4b)
al E,-E.'4

such that

vla,M 6'P I a',M)v= -ie + +--a (S +T) (4c)

0a2 1=92=0

Let us also define the operators F and d such that

*[F,Ho]+(Eo-E.)FP ja')=exp[-i Fi'+g 2 ' 2 )]la'), (5a)

(a I -[,,Ho]+(E,-E,.)G=(a Iexp[-i(e' i l+T 2"- 2) , (5b)

where H o is the unperturbed Hamiltonian of 02. One then has S =(a,M [ VFa',M) and T =(a,M 6V la',M). To
evaluate F and G, we assume that they depend only on position variables. This approximation permits us to replace H 0
in (5a) and (5b) with the kinetic energy operator (p 2/2m +- f/2m) of the valence electrons. F and G are then readily
evaluated in the plane-wave representation, and S and T become

(I, l.t( l,2)(M I 7(k k' )i, MY)ao(l,2)a ( k + t,k + t2)
S= a a (6a)

S ' 2,. _ 2--- + 2 m
.Ij-122 2m

T= (6b)

V.. .; . -E(k+ - j )2 (k i .)2

Ea'-Ea+ 7 m 322=,2 m =,2 2m

Here V'( k 1, k2 ) is the Fourier transform

7'1,k 2)= f d-C1 di 2e V(xgx2)

*Pb I C2 i2

..- We also separated the 02 wave 'unctions into spatial and spin parts as in d'o(-t,x)al, 2), and 6
a is the Fourier

-." transform of 0.e:

0 *(ki,k 2)= f dOda2e- .- k ._ j... (7b)
It follows from (4c) that

= .- _ _ _ . _. _ _ .. _ .. _ _ _ . _. _ . _ .. ... . ... .. , .. .. .-_ . ..
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v(a,M I6'a',M)v= E E., ,

x [x:(l,2)(M JS,, Ck) I M)Xo.(I,2)1. (8)

Now let a be the state 'A, with ML = +2, and a' the state 37. with M s = + 1. The 02 wave functions for these states

are given by I

Tb.= ( (X)ir'( 2), (9a)

X" I[X+(l)X_(2)-X_( )X +(2)], (9b)

(9c)

(9d) 0

where 0r) are molecular orbitals for individual electrons, and X± are the electronic spinors for spin up and down. A
straightforward algebra then yields

l=v(A,M, = 2;M D 1 3 1-Ms = ;M) v

I i75eg X(M [aA M)-- fdi[,r,(+i)] ° +r-( ) (10)

- 321rm(AE) 2  Aix 4

where AE =Ea -E. o is the unperturbed energy difference (P+) or down (P-) at a given site, and a structure factor
and Z+ are the complex vectors +=x_ y. The matrix for the external spin system,
element (M I x,IM)=sA. iri(x) can be written in
terms of the n =2, 1l, m=+l atomic orbitals p+(-) -- ( -P_) _ (P+-P)-Z (14)
ass 'R Rb r 6-

lrim(x=p+(I-)-p±(i-b) , (11) where ro is a scaling length such that ro=10 -8 cm. Z
may be calculated in a similar manner to the calculationwhere 'i and b are the positions of the oxygen atoms. To of a Madelung constant. For an order of magnitude deter-

obtain an estimate for (10), we first simplify (1) by ap- mination, however, one may replace the sum over X. by a
proximating +r with three-dimensional volume integral, and Z is approximate-

(12a) ly given by

( 6 [ 3
where rab-- is the internuclear distance of 0 2. [ j 3 rr0 -j 4r (1o
Second, we assume that external spins are relatively far Z 3 r -(5

from 02 and use the expansion

I 1 4(-'R) [l2(R') 2 -R 2 x2 ] where r, is the average distance between two spin sites
+_ -+ s (hence r, is the smallest length in the set IR;I). For

many magnetic materials r,/ro-2.9  Setting g =2,
(12b) AE = 1, eV, and r~b/ro - 1.5, we find

Using Eqs. (12a) and (12b), the integral in Eq. (10) can be
readily evaluated. The result is somewhat long; however, (())=(3X10- 3 debyei(3i_+i)(P+ -P-). (16)
it can be simplified by taking an average over the orienta-
tions of the molecular axis (i.e., over P'b), and also over In other words, the induced moment is on the order of
the orientations of the external spins (i.e., over RA), if N is 102 debye, and the induced spontaneous decay rate is on
sufficiently large and the spins are distributed around the the order of 102 sec- 1 . Furthermore, if the perturbed 02
molecule. One then finds is in a laser field of power p, then its Rabi frequency is 0

141rm (AE) 2  R_6__1_
_________1 (3) -l0 sec, (17)

The sum in Eq. (13) can be replaced by an expression
which involves the probabilities of finding the spin up for p 107 W/cm 2.
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I1. CONCLUDING REMARKS is oolp.w INA, where PM is the number of atoms per unit
volume of the target material and NA is the Avogadro's

It is clear from the preceding discussion that if the number. Thus the overall transition rate is kQolpm /NA.
external spins have no preferred direction and are com- Since the duration of the interaction is /v, the probability
pletely random, the induced dipole moment vanishes of quenching is given by
within the approximations made above. In order to obtain k -
dipole moment between 'At and 5 states, the singlet ox- (18)
ygen must interact with a collection of particles which has PrQ NA v

net magnetization over some finite volume.
The best way to establish contact between the singlet on the basis of this simple model. Taking NA =6X 103,

oxygen and a magnetic surface may be by means of /= I cm, o 0r- 10- 14 cm 2, p.5 - 1022 atom/cm3, and v_ 103

grazing-angle scattering. We have in mind the situation cm/sec, one finds that prQ 10- which rules out chem-

in which slowly moving (V _ 103-105 cm/sec) singlet oxy- ical quenching.

gen molecules scatter from a ferromagnetic surface at There are, of course, other types of quenching mecha-

grazing angles ( < 1), and the stimulated emission occurs nisms, such as electron pick-up or electron loss by the

while molecules are in the vicinity of the surface. This scattering molecule, exchange of the molecular rotational

type of scattering permits maximum exposure of the energy with the surface, etc. Furthermore, the surface

metastable molecules to the localized spins of the magnet- may partially be demagnetized as a result of the scatter-

ic material, and minimizes the damage to the surface. ing. However, we do not expect these processes to alter

The same surface can therefore be used repeatedly.10  the order of magnitude results presented above. We con-

An important advantage of the above scattering scheme clude that the scheme proposed here appears to be quite

is that it cuts down on possible chemical reactions be- promising to obtain an oxygen laser. More importantly,

tween the singlet oxygen and the surface by restricting the the scheme may be used in obtaining lasers from other

duration of the contact. In chemical reactions between metastable species for which collision partners are not

the singlet oxygen and the ferromagnetic materials, the known at the present time.

quenching rate kQ is typically 108 mol - 1 sec-. 1' Let us
consider a single 02 molecule and assume that it follows a ACKNOWLEDGMENTS
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field are small. W~hen this is the case, Eqs. (l)-(3) may be
linearized to obtain

aK2(,-[0110)aZ j~zjO~jj) p(7)

* iljoz

3S (,r z=DA fpjO, 0 O K2(z-,T0,RJ0) (9)

K2  -(1,/2r) [deo exp(-iO0 )6e and K, = -(1/2-,r) fdeo exp(-i80 ) (pi - pio)
are respecti 4ely the density and energy bunching amnplitudes. We
expect the FEL to saturate when IK2 1 becomes comparable to one. The
initial values of K2 and KI are zero.

If there is no inhomogeneous broadening, we set
j(T,1O)= I(TO)6(izo). Then Eqs. (7)-(9) may be solved by Laplace

transforming in z to give

E (Z,T) =E (0,T)
S S

FO ~dIJ F(X)E S(0, T z /2y C) (10)

where F0(x) is a generalized hypergeometric function given by the
series expansion

1 n
F0 (x) Z nin-11x

n=1(1

and
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T-Z'/2ysc
S

X i KD[Ail2y2 cZ '2 fdTo I(-o)

T-z/2y 2 c (12)

Equation (10) expresses the field at position z as the sum of the
incident field at time T and an integral over the incident field at

earlier times. We see explicitly that coherence cannot develop in
one pass over more than the slippage time L/2y 2c, where L is the

S
wiggler length. This is true also in the strong-signal regime. In
other words, an FEL operating without mirrors by ASE cannot be
coherent over more laser periods than there are wiggler periods.

In the case that both the current and the laser field are cw we
put E (ZT) = Es(z) exp(i2y 2cOt) in Eq. (10) to obtain

E (Z) = E (O)[1 + dz ' F 0C '2z - ' , (13)

0 (

where C = KDIAiI2I. Since the power series (11) is very rapidly

convergent, the field can generally be calculated accurately by
keeping only a few terms in the expansion. Only the first term is

needed to obtain the well-known antisymmetric small-gain formula with
peak gain .27 CL3 at _0L = 2.6.

An alternative approach to cw theory is to drop the dependence
on T and To in Eqs. (l)-(3) and (7)-(9). In this case we take .(0)
to be centered at w0 with width U. That is, the detuning To from
resonance is included in J. rather than Es. If we define the
normalized distribution f(PO) by S= If, then Eqs. (7)-(9) become

dK2(z,p)/dz= K, (14)

iWO z

dK,(",Wo)/d:= A. (15)

r-iWOZ , ., ..

dE (:)/d: iD A.I Jd'lof(t a~c K(,O)(16)
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There equations may be solved by Laplace transforming to give

I B 7
ES(Z) =2Ei E (0) d~e [8 - iC dof(11o)/(S ilo)'] - 1 , (17)

a-im

where the contour is to be taken to the right of all singularities. *
The simplest case is where f(P0 ) is a Lorentzian,

1 1£0)= --TU 1+(__ (18) S

Then the integral over P0 in Eq. (17) gives (8 .+ ii0 + U) 2 . We may
close the contour integral over 8 around the three poles at the roots
8. of the equation

8(8 + iP0 + U)2 = iC (19)

and evaluate the integral to express Es(z) as a linear combination of
the three exponentials exp(Siz). In the case U = 0 it can be shown
that this solution is equivalent to that in Eq. (13). In general at
most one of the three roots has a positive real part, and the
corresponding mode will dominate near the end of a sufficiently long
wiggler (unless saturation sets in first). The detuning giving
maximum growth of the unstable mode is TO = U/3 -. The gain is
greatly reduced if U C3. In the case that U << C and 0 U/3/2
the three modes contribute about equally at the entrance of the
wiggler and the gain in the limit of very large gain approaches

1 11/ 3  4
G = . exp[(3C -- U) L] (20)

Graphs showing the dependence of 2Re(B) on P0 and U may be found in :
Reference 4. The condition that the FEL saturateswhen K, = 1 can be
used to infer a saturation power Psat - (1 2A i/4k q)3(c/E 0 E)".

SE-ICLAsS:CAL EEL GAIN

When electrons emit a laser photon, they undergo a recoil
6E =h . If we let the recoil in energy detuning units be 2q, we
see frcs Eq. (4) that

0

"-S -",

. - .' ...- '- - . ." i' - . -. .'- i - " '- -" °' 3 ." " -'- " --i " -" -- . .- - .' " -, i - -..- . . ' -- . .- .. . "..i '
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q = hk2/2Mcy 3  (21)

If 2q is comparable to or larger than the homogeneous broadening 7/L,

then the classical gain formula becomes incorrect and seriously

overestimates the true gain. The quantum recoil can be important for
an electromagnetic wiggler at infrared wavelengths. In this case y
is typi-ally < 50 and T - 1 is small. Note that L for an

electromagnetic wiggler is only half the wiggler pulse length (L 2
cT ), since the wiggler pulse and the electrons pass through each

otger. The product 2qL may be written as

T (nsec)

2qL = 582 r
[Ai (1m) ]3'[ (.O ] (22)

S (2

As an example, for a CO2 laser pulse 1 nsec long used to generate

radiation of Xs = 100A, Eq. (22) ives 1.6n.
It has been shown by Renieri that the condition 2qL > 7r implies

that the quantum-mechanical spreading of the wave packet describing

the electron is larger than the laser wavelength. Ths is another
indication that a quantum-mechanical treatment of the electrons is
reQ-Jired.

We present here a semiclassical theory of the FEL in which the
el ctrons are described quantum mechanically, while the field is

treated classically. This approach accounts satisfactorily for the
quantum recoil but (as in Lamb's sEniclassical theory of the laser6 )

ties not include the noise needed to produce laser start-up when no

laser field is initially present. In the laboratory frame the

semiclassical theory can be developed by coupling the Klein-Gordon
equation for the electrons with the Maxwell equation for the field.

An equivalent approach is obtained by recalling that 8 and p are

proportional to the position and momentmn of an electron in a frame

moving at the speed of the pondercmotive potential. In quantum

theory these become operators 0 and u wbose commutator is

[0,v] = 2iq (23)

Restricting our attention to cw operation, Eqs. (1) and (2) become
the operator ecuations

do/dz = v, (24)
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* iG 25
dv/dz -ic[A. E (z)e + c.c.] (25)

We consider here only the case of a uniform wiggler, so Ai is
- constant. For a wiggler field which is a high-power Gaussian beam,

the wiggler is effectively tapered by the slowing of the electrons in
the vicinity of the beam waist. This is an important source of
additional homogeneous broadening if the pump laser power exceeds
r Em 2c5/2e 2 = 1GW.

Equations (24) and (25) may be interpreted as Heisenberg
equations of the "Hamiltonian"

I

i8 * -ie
iA. E e + iKA.E e (26), S: - 1 sis

with the following rule for the evolution of operators:

A/3z = (i/2q)[H,AI (27)

ft I Similarly the Schrbdinger equation for state vectors becomes
I

Hj-> = 2iqdji>/dz (28)

This formulation is equivalent to nonrelativistic quantrn mechanics
* in the moving frame. The semiclassical generalization of Eq. (3) is

obtained by replacing the averages on the right side by the quantum
expectation value, yielding

dE S (z)/dz = DA.I tr(pe ) (29)

where p is the density matrix. If we assurme that the initial density

matrix is diagonal in the P representation,

P-1O,4) f(WoM(O Po) (30)

we can use first-order perturbation theory to obtain a quantLn
generalization of Eqs. (14)-(16). It turns out that only Eq. (15) is
altered. It beccrnes

".. '. .
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dKl(z,pO)/dz = KA. e E - q2K2  (31)

If f(U0) is Lorentzian, the cubic dispersion relation (19) is
generalized to become

8[(a + i + U)2 + q2 ] = iC. (32)

We show in Reference 4 that the quanturn recoil acts to reduce 2Re(6)
for the unstable mode below its classical value, as well as to reduce
the range in To over which there is an instability.

For the case of small gain per pass, the gain can be written
quite generally as

0 r* sinioL/2} o- 2

G = C dio[f(wo + q) - f(wo - q)] j (33)

2q (33)

If 2q is very small compared to either the homogeneous broadening 7/L .
or the inhomogeneous broadening U, then G reduces to its classical
value. The condition U < 2q is rather restrictive; it is equivalent
to the condition that the energy spread of the electrons be less than
hws. For 100A x rays this is less than 1 keV. Even if low energy
electrons are used (as would be the case with an optical wiggler),
the relative energy spread needed to produce quantum modifications in
the gain would still be less then .01%. However, even in the regime
U > 2q, if 2q > 7/L, quantum effects should be manifested, for
example, in the statistics of the emitted photons or in the electron
energy distribution at saturation. When 2q > 7/L, one expects the
FEL to saturate when one photon has been Enitted per electron.

The validity of first-order perturbation theory depends on the
smallness of the product of the interaction energy with the
interaction time divided by h. In terms of the Hamiltonian (26) one
requires K|AiEsIL < 2q. Substituting for the values of K and q, this
becomes (e'-AiEsi/2Mcz-(shks)L < i. For an x-ray FEL (in contrast to,
say,an infrared FEL) this condition will hold for relatively large
laser intensities (Es of the order of 106V/m with an optical
wiggler), making first-order perturbation theory appropriate to deal
with at least the sall-signal regime. In the class-cal regime
(2qL << 7) it turns out that the gain predicted by perturbation
theory is correct even for conditions where perturbation theory would
be expected to break do',n, but it rerains to be seen whether this is
true of the quantum regime.

......................... .-.
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Further discussion of the quantum regime for an FE with an
infrared laser pulse as the wiggler may be found in Reference 4, 0
where niumerical examples are given for which the gain per pass may be
as high as 40% at 5.7A.

CONSTRAINTS ON A LOG-WIGGLER X-RAY FEL

One can anticipate that the extension of FEL operation to x-ray ••
wavelengths by using high-energy electrons and a long conventional
wiggler will be a gradual and evolutionary one, in which one builds
on the experience gained by previous experiments at longer
wavelengths. Electron beam quality appears to be the greatest
problem, although there are also difficult problems in resonator
optics and wiggler construction. For soft x-rays storage rings 0
provide an acceptable beam quality, and experiments using a storage
ring to drive a 10OA FEL are being planned. Below about 60A the
storage-ring approach becomes untenable because of the quantum energy
spread in the electron beam induced by synchrotron radiation in the
ring.4 9'9 In principle one could get a better quality beam at high
energy by using a linear accelerator, but suitable accelerators have
not yet been built. It appears that rf linacs give too much energy
spread, but induction linacs may offer a possibility.

10

We now list several constraints on the operation of a high-gain
FEL, referring to a numerical example from Reference 4, the
parameters of which are summarized in Table 1. Many of these
constraints may be expressed as limitations on the length L for which
a cold-beam classical one-dimensional gain calculation is correct.

Table I Parameters for a 5 A X-Ray FEL

Quantity Symbol Value

Wiggler wavelength Xq 3.2 cm
Magnetic field B .24 T
Mass shift A1.512
Laser wavelength Xs 5 A
Electron energy E 3.554 GeV
Current I IA
Laser mode area .16 rm2

Wiggler length L 276 m
Gain G 1000
Saturation power Psat 1.7 W '
Slippage time L/2y 2 c 1.44 x 10 1sec
Characteristic gain lengthn 3C _ 1/ 3  30.29 m
Filling factor 1
Electrons per laser wavelength Is/ec 104

A. Reciprocal quantu-n width: 7r/2q = rMcys 3/Tk s : 11.5 km.
Since this is >> L, the device is completely classical.

p 0 ..
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B. Diffractive spreading of laser beam: Rayleigh

range = E/Xq = 320 m. This is of the same order as L, so diffraction
is a significant effect.

C. Reciprocal energy spread: 1/U = (X /47)(E/6E). If we take

the energy spread 6E to be l0keV we obtain liU = 900 m, which is
larger than L. Equation (20) indicates that the gain is reduced from

1000 to 664. The difficulty is whether one can obtain such a small
energy spread at this high energy. This is presently unclear.

D. Wiggle amplitude: One must check that the wiggle amplitude
does not exceed the assumed cross-sectional dimension of the beam.
In the present case the wiggle amplitude is eBX2c/4n 2E = .5 pm, so

there is no problem. q

E. The characteristic distance over which the Plectron beam
spreads due to Coulomb repulsion"1 is (4E~mc3y3E/Ie)i = 5.4 km. This

is clearly no problem.
F. The characteristic distance over which the electron beam

spreads due to emittance e is E/nc. If we assume that the normalized
emittance cn -,e is the same as for the Stanford superconducting
linac, then e = .06 mm mrad (43MeV/3.554 GeV). Then E/Trr = 70 m.
This is small enough to be a problem. However, it is a problem which

should be correctable by placing quadrupole focusing elements along

the wiggler.
G. The condition that electrons with emittance stay in phase

with the ponderomotive potential imposes a constraint on the .length
of the wiggler. The phase angle change for electrons of velocity
component v is

z

6E = dz[k k (c/v - 1)]

0 q s

= q k- ks/2y 2 )(1 + IP - eAi 12 /m 2 c2 )]0 S(34)

where P is the transverse canonical momentum.
Since kq - (k /2y2) (1 + e2A2/m 2c2) = k - ks/2y2= 0, only the

terms P - Ai and P2 survive in tie integrand. However, P Ai is
oscillatory and averages to zero. Therefore

1601 (ks/.y 2)(p 2/m2 c 2 )L (kqp 2/m2c2 )L . (35)

We may relate P to the enittance by

7-. -
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p2 = = (E2 /Z)m 2 c2 y2 
=m2C22/z

z  n

so that if we require 166 < 2nT, we get L < Z q/e2 - 201 m. This is
small enough to be significant. 

q

H. Transverse dependence of the wiggler field leads to
dephasing of electrons which sample the field at different transverse
positions r. Let us assume that the wiggler field varies
quadratically off axis, such that 6A /A = r2/X2. The actual
electron motion is rather complicated (betatron oscillations), but we
can get a rough estimate by letting Ai vary with r in Eq. (34) (now s
setting P = 0). This gives 1661 = kqLS(e 2jAfj 2/m2c2). If we assume
that ezjAiI2/m2c2 is of the order of unity, which is typically the
case for magnetostatic wigglers used in FEL's, and let the variation
in r2 be E, then 1661 = kqLE/A2. The condition 1661 < 27T now becomes
L < X3/Z = 205 m. This is small enough to be a problem. Note that
the length constraint here is proportional to l/E, in contrast to the
constraints in items B, E, F and G, which are proportional to Z.

I. To operate without a resonator by ASE, there must be
sufficient noise to get the lasing started. For conventional lasers
there is a characteristic delay time after which the lasing starts.
For the FEL there is an analogous delay distance. According to
Bonifacio, Narducci and Pellegrini, 12 the delay distance z is given
by the product of the characteristic gainlength 3-'{C-/3and.
(injNj + 1), where N is the number of electrons per laser wavelength.
This criterion gives zD = 101m, which means that lasing should occur
without a resonator, at least on most shots.

A disadvantage of operating without a resonator is that the
temporal coherence is limited to the slippage time, which is only
1.44 x 10-14sec for the present example. Perhaps an order of
magnitude increase in temporal coherence can be obtained by using a
Bragg crystal resonator, simply because of the narrow wavelength band
6X over which the resonator is a good reflector. 13 This will extend
the optical wave packets to a minimum length A2/c6A after
reflection. Nevertheless, it is unlikely that an x-ray EEL can
approach the coherence obtainable by free-electron harmonic
up-conversion of an already coherent laser signal.

In conclusion, it appears that extension of EEL operation down
to the 5 A range will be difficult, but maybe not impossible. It
will depend on experience gained by doing high-gain EEL experiments
at longer wavelengths and on developments in accelerator technology
motivated by EEL applications. An EEL with a long conventional
wiggler is capable of higher gain than one using an infrared
electromagnetic wiggler. On the other hand, the latter type of
device is more compact, uses low-energy electrons, and presents an
opportunity to explore the quantum regime of the EEL.

~~~~~~~. .... .. . . . .... .. . . . ... -" •. - : ... ' - ., " " . .- .. . . .-
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Abstract

We present the nonrelativistic theory of nuclear beta-decay of arbitrary

forbiddenness in the presence of an external plane wave field. Emphasis is on

the question of whether the field is able to break the common selection rules,

so that forbidden decays could be significantly enhanced. It turns out that

while this is true in principle the required field strength is of the order of

the critical one which is far beyond experimental possibilities. Recent claims

to the contrary are contested. In particular, in the case of the first order

forbidden decay of Sr, we obtain an enhancement which is smaller than a

previously published estimate by twenty-four orders of magnitude.

. . . . . . . . .. . . . . . . .
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I. Introd~uction

Nuclear decay rates are usually considered to be, on earth and under even

extreme laboratory conditions) almost on the same footing with fundamental

constants. i-cr example, they are commonly supposed to be essentially

independent of changes in their environment as specified by temperature,

external electromagnetic fields, etc.

Recently, however, it has been claimed [1,2] that total decay rates of

forbidden nuclear beta-decay can be significantly enhanced by an intense plane-

wave field. The idea was that external fields be able to change the selection

rules of the decay or, at least, to generate contributions to the decay rate

which are of the same type and order of magnitude as those which usually allow

for forbidden decays. Whereas it is beyond any doubts that this can be achieved

with fields of the order of the critical field strength Ecr; = (M c /et)

1l.3xl0 Volt/cm, the claim is that experimentally accessible fields are-

already sufficient in order to render the effect observable, e.g., focused

intense laser fields with a field strength of about 10 Volt/cm or radio fields

of a transmission line with even much smaller field strengths. The original

estimates [2] suggesting enhancements by many orders of magnitude for highly

forbidden decays were shown to be erroneous [3j. However, in Refs. 4 and 5,

significant enhancements are still predicted. The present authors contested

these statements on the basis of general arguments in Ref. 3. However, neither

in Ref. 3, nor in Refs. 4 and 5 were quantitative estimates of the total decay

rate given.

In this paper, we derive and evaluate explicitly the total rate for a decay

of arbitrary forbiddenness in the presence of an intense plane wave field. Our

theoretical rmxdel will be essentially that of Ref s. 1 and 2. The electron will

be described by the Volkov solution for a charged particle in the presence of a
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plane wave field. The nuclear model will be the shell model with an inert

0 -core, which is affected neither by the decay nor by the external field, and
0

one or more valence nucleon in an angular momentum coupled state, so that the

nuclear wave functions are specified by an effective one-particle HRaziltonian.

However, as will be pointed out later, we disagree with Pefs. 1 and 2 on the

interpretation of the nuclear wave functions in the external field. We shall

achieve great formal simplification by restricting ourselves to a

nonrelativistic treatment in the spirit of Fermi's fundamental paper [6].

Hence, our results are not immediately applicable to real decays. However, the

purpose of this note is to give simple and explicit results for an albeit

idealized situation, which, if positive, would encourage a more realistic

treatment. rMreover, we have initiated an analogous relativistic treatment [3],

the conclusicn being that the field dependence is much the same in the

relativistic and nonrelativistic case.

It should be mentioned, that we shall entirely disregard effects which are

due to the atomic environment. It is well known that external parameters such

as temperature do affect observed nuclear decay rates via their impact on the

electron's wave function, in particular, if it is bound, like in electron

capture, bound state beta-decay or internal conversion. These effects have been

estimated and been found to be of relative order of 10 , at best, under

favorable conditions; for a review see [7], see also [8]. In contrast, the

effects predicted in [1,2] are much larger.

In Section II we shall set up the general framework. In contrast to Fefs.

1, 2 and 4, 5 we shall directly calculate the total decay rate. This means, we

first square the S-matrix element for the decay, then integrate over the final

phase space, and do the integrations over time last. This procedure which has

previously been found to be advantageous in external field problems (see, e.g.,

"°po.°0 .

.......................................................~ .- .-



S

E. 4

Ref. 9) leaves the dependence on the external field transparent throughout the

calculation and bypasses the cumbersome and error prone integration over the

differential decay rate. In Section III we proceed to an explicit evaluation of

the total decay rate for a monochromatic plane wave field with circular

polarizaticn studying the possible enhancement of decays of arbitrary

forbiddenness.
z

In any case, enhancements will be seen to be of the order of (E/E.,*)

with E being the applied electric field strength. This renders the effects

entirely unobservable, given the limited field strength that can for a limited

time be obtained under laboratory conditions. In particular, under the

conditions envisioned in Ref. 2 the enhancement will be found to be of the order

of 107  . In concluding, we shall discuss the possible reason for the huge

discrepancy between Refs. 1, 2 and our results.

II. BASIC FOP'-.:mLIS-M

In order to make this paper self-contained and to introduce our notatlcn we

will here outline the basic formalism which has been more extensively presented-

in a previous paper [3]. We shall exclusively employ the Coulomb gauge and

adopt the long wave length approximation for the electromagnetic field so that

A = A(t), in accordance with our nonrelativistic treatment. We use units such

that = c = 1, and the electron charge is e = -lel. To lowest order in the

weak interaction gV and to all orders in the electromagnetic interaction the

S-matrix element for nuclear beta-decay is

L-i~i

S1

-.--- - -~-. -
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(2.1)

Here

= / (2.2)

is the wave function of the neutrino with momentum q, and

(2.3)

with E p /2m is the nonrelativistic Volkov solution describing the electrCn

with rmentum p. and are the initial and final nuclear wave

functions, which are solutions of a one particle Schroiinger equaticn

_ (2.4)

with a self-ccnsistent nuclear potential V(r) and reduced charges and masses E1]

m', and e, respectively. Follwing Ref. 1, we shall replace the nuclear

wave functicns by

L '. . .::: .- *-. . . ..
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.1 -e if (2.5)7-

with a solution of the Schrodinger equation with the Hamiltonian

2(2. 6

The wave function (2.5) would be exact if 0were derived from the Hamiltonian

H0 - erL(t) with E = -A/)t, rather than from Eq. (2.6). It is important to

note that the wavefunction (2.5), as it stands, does not include, contrary to

appearance,any interaction with the external field, but is rather the correct

noninteracting wave function in the Coulomb gauge. It is here that our

interpretation deviates from Ref. 1, where it is assumed that the Y (t/
-0

represent a fair approximation to the interacting nuclear wave functions. We .

have previously discussed this point at length [3]. Here we shall be content

7,

with pointing out that the operator p = -i in Eq. (2.6) represents the

canonical momentum p = mv + eA, which does not, since we use the Coulomb gauge

with A f 0, agree with the mechanical momentum. Hence an eigenfunction of H 0

does not appropriately describe the state in the absence of the field. This is

evident from the expectation value of the velocity in an eigenstate of H0 ,

which does depend on the field, whereas the expectation value in a state (2.5),

0



E. 7

does not, as it should be for a noninteracting state. Hence one has to be awiare

-4 that by using Eq. (2.5) one entirely ignores the interaction between the nucleus

and the external field.*

The total decay rate per unit time is obtained from

F~ ~ ~ 2. 7)

The standard procedure is now to first evaluate the differential decay rate

Is I and then to do the integration over phase space. This would require to

specify the external field A(t) from the outset so that the integration over

time in S can be carried out. The final integration over phase space is

formidable [1,4,5] and has not been done yet in Refs. 4 and 5. Since we are not

interested in the differential decay rate, we shall here reverse the oLder of

5, integrations: we shall first integrate over phase space expressing the total

decay rate in terms of the electron's and neutrino's Green functions, and do the

integrations over time after.ards. The integration over r in S need not

IL concern us here; it will be absorbed into a nuclear matrix element which is left

untouched. Hence we write

In view of the fact that the frequency and field strength of the external
field are very small on a nuclear scale one would expect this to be at least
a fair approxi7.aticn. Unfortunately, no exactly solvable model seems to be
available in order to test this assumption. The only exception is the
harmcnic oscillator which can be solved exactly in the presence of a periodic
external field. This solution corrcborates the above assumption. However,
the har.:anic oscillator is not a very realistic example, given the
equidistance of its levels and the lack of a continuum. So the question of
whether the field-nucleus interaction might produce noticeable effects,
remains open to some extent, in particular, if the nucleus has a very low
lying excited state or if he nuclear energy release in the beta decay is very
small. In any event, to improve on the approximation (2.5) will be very
hard.

" . tt ,%.
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/€-? j -.? Lz2 / L,' (9 J)
o Jc C t0 2"yv , .(" -

"--- (2.3s)

with

/ /~) re.d -

_7 -

(2.9)

In the preceiin9 equation we introduced E0 = E - E- m as the nuclear energy

release minus the electron mass and have taken the charge difference [lj e -e

to be e, as required by charge conservation. The Green functions are

CC)

_<><. _ ,_ , ( _ <

L (2.10)

.- . .- -.-- ..- .7 -.



with

) ) (2.11)

- and

S (2. 12)

where

In 5q. (2.12) we introduced the free electron Green function

* ~09-z

/ (2.14)

The Green functions allow for explicit representations as exhibited in the last

lines of L±qs. (2.10) and (2.14); however, the preceding integral representations

with respect to energy will turn out to be mo~re convenient.

Noting that
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4 / /

-t " (2.15) 0

with

- (2.16)

we can now rewrite Eq. (2.9) as

,, . C A '- O C/-- '
T--> T _ .

e('dz&- A ',% 2J k(2.17)

This representation has some pleasant features. The entire field dependence is

contained in the functionsW (t' ,t) and M(t' ,t) so that by dropping them we

recover the free decay rate (for an arbitrary degree of forbiddenness). The

quantity Q is rore than just a convenient abbreviation. It is the only term

which depends both on the field and on r and r'. Hence it is the prime

candidate for a possible field induced removal of forbiddenness. However, Eq. -

(2.15) shows remarkable cancellations: all the individual terms on the left

hand side are of the order of eIAIR with R0 the nuclear radius. For the

experimental conditions envisioned in the introduction this can readily be of S

order unity or even larger. In contras, the right hand side involves the

• S .• "
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electric field rather than the vector potential, and we have

(2.1 S)

If we ass:-.,e that the integrals over time receive significant contributions only
-I

for Irl = It'- tl Z Ed as suggested by the uncertainty relation, we have in Eo.

(2.18)W' W/E << 1 so that the impact of the function (r',t) should be

marginal. Even if we do not invoke the uncertainty relation, we notice fron

Eqs. (2.10) and (2.14) that the integrand of Eq. (2.17) is proportional to

Notably, this rapid drop-off is independent of the external field. This

fact makes it very unlikely that the integral (2.17) will receive any

significant contributions from larger values of V". With regard to the second

field-dependent function in Eq. (2.17) we note its power series expansion

S(2.19)

This starts with the cubic pewqer of Z-, so that it is not likely to play any

significant role, either.

The preceding arguments suggest already that any field induced effects

should be fairly small. Yet, hand waving estimates of the double integral

(2.17) might seem to be unreliable. Because of that, and in order to get

explicit numbers, we shall turn to an explicit evaluation in the next Section.

III. EPLICIT CACLjjAjI-CN, OF q!E W"I.OFL DECAY PRATC LOR CIRCULAR POLARI -ZAIOL.

We shall now evaluate Eq. (2.17), explicitly for a monochromatic circularly -

polarized field

e S1-

U ." " .
S.' "
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With slightly -ore algebra, linear polarization could be treated alcn2 the ,3.-:e

lines. The field dependent functions (2.13) and (2.15) are now

40r/

(e~ ' ) J0,(i:~2 ,/~4Ji2,/

-l .%hll.. r/ ) ( @ ii. &T'.-y;.,,' cA T T), (3.2).

and

(.4 )iT4~' (3*3) -

14ote that (t,t) does only depend onZ, and the integrand of Eq. (2.17) only

depends on"= (t + t')/2 via the quantity (tI,t). The integral over-t' can

now be done:

V/, -27/  ( .3.4)

with

/' ) 2 JI ' w- )

(35

- .-/
_~ 'r "' 1 "rL 3

jI4
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where r = (x,y), r' = (x',y'). Eq. (2.17) can now be rewritten as

I e >1 // § (-ch-z'- /

- (3.$)

T-(

wherej% is the field independent part of Eq. (2.17), i.e., the right hand side

with P (t',t) = M(t',t) = 0. In Eq. (3.6) we exploited the particular EO-

dependence of Eq. (2.17) in ozder to replace L -/by in the field

dependent terms. Hence we could pull the latter terms out of the integral cver

T. No assunption as to the smallness of (ot-is involved. Hence, barring a

couple of differentizations, the problem is reduced to the field free one.

The quantity (r,r') is now most easily evaluated by inserting the

integral representations (2.10) and (2.16) and expanding everything with resc ect

to x Ir -r'I. The result is .

&00

0
One of the two sums can be carried out in a multitude of ways, but the explicit

form (3.7) is the most useful one.

We now have to insert Eq. (3.7) into Eq. (3.6) and to carry out the

required differentiations. Needless to say, Eq. (3.6) would be entirely useless

if the differential operators could not be expanded into power series with. -

respect to)/dE. we shall first write down and then discuss the expansions of

exp (-i? ) and ' (ea rz); with the abbreviations

. .° .
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E .144- (:

they are

e- - .- 7-.

1< /0/;"
Z0cV((le- (3-)

and

(De 7(T- T3
/- / .

(3.10) .

In applying the differential operators (3.9) and (3.10) to Eq. (3.7), we first

note that each 'r will effectively be replaced by a very small number,

since the ratio L/E is very small in any case; for E0  m we have .-E '- 10
0 6 0

" for a laser field anci W/E i10 for the radio frequency fields with , 00 loom

. * " . . . . . . .- -
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which are ccnsidered in Ref. 2. The effective expansion parameter in Eq. (3.9)

is then

and

in Eq. (3.10) with R -,1.1 x 10 cm x A"' the nuclear radius. Both
0

quantities are very small for experimentally available fields so that the

expansions (3.9) and (3.10) are very well justified. With respect to Eq. (3.7)

we note that the main expansion parameter

*~ ~ L>)~ -3 ~ ~ (3.13)

is again small. Hence, it will be sufficient in most applications to keep only

the lowest power of x which is necessary in view of the forbiddenness of the

decay. The sum over e is then restricted to a few terms.

Let us first consider the field induced enhancement of allowed beta decay.

Since the expansion parameter (3.12) is in general smaller than (3.11) we can

ignore J (ea 47). Keeping only the lowest order terms in Eq.(3.9) and using

Eq.(3.7) (with x = 0), (3.6) and (2.8) we arrive at

:":S :'

S;-iii;~l"

....................................................................................
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a ~ (3. 14)

Apparently, the field induced enhancement is unobservably small*. In Eq. (3.14)

we included the next-to-leading terms in order to be able to make the comparison .

with the nonrelativistic limit of a fully relativistic calculation [13,14] of

laser enhancement of allowed beta-decay. Equation (3.14) agrees with Eq. (118)

of Ref. 14. Actually, the next-to-leading terms as exhibited in Eq. (3.14) are

incomplete, because additional terms resulting from J (ea f-z) (Eq. (3.10)) are

of at least the same order of magnitude. Since the leading term is extremely

small already, we did not care to write them down.

We will now turn to a first order forbidden decay. In the absence of the

field the leading contribution to the decay rate comes from the term with k = 1

in Eq. (3.7). Pecalling that x = (r - r') and that we need one power of r in

each nuclear matrix element to render if nonzero, we obtain

/ - 1('- 2 '> I -",, I ' '

(3.15)

I revious conclusions to the contrary [10,11] were flawed and due to an

inadequate approximation in evaluating sums over Bessel functions. The
present authors have corrected this mistake in the general form of a no-go
theorem [12].

SI7i

...-.---.... .* * * -1.* .2.*-."
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Considering now the external field we know already from the previous exampl-,

that the enhancement with is formally due to the operator 1, is extremely

small. Hence, we shall rather consider the operator J (eaq"-) inich, via its

dependence on r and r', generates the kind of field induced modifications of the

selection rules which are proposed in Refs. 1 and 2. Hence in the presence of

the field we do obtain a non zero contribution to the decay rate frcm the term

with k 0 in Eq. (3.7), which we shall call
Vm

1 0, fO ce. 7  j " --0-Cd•0 0  4: f ' Q 'J

(3.16)

Keeping just the leading term in the expansion (3.10) we get*

, - > .(3.17)

If we assume that <rT> /<r> 2/3, the enhancement is

IO- ...
/I / _c)

* The last term in the square bracket in Eq. (3.10) seems at first glance to

yield an imaginary contribution to the decay rate. Actually it cancels when
integrated over with the nuclear wave functions.

.................................................................. ..
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Hence we arrive at much the same conclusion as in the case of allowed

beta-decay: the enhancement which is due to field induced rodifications of the

selection rules is by far too small to be observable.

In order to obtain the total enhancement of a first forbidden decay we

still have to add the modification of/ }, due to the operatora1Z, viz.

j
7r

(.9)

so that the total enhancement is S

F) 9I) I ) - )(

o//_S .•69 /PJ14 ~.(3.20)

To give a specific example, let us look at the first order forbidden decay

of Sr which was considered in Ref. 2. In that paper an enhancement of the

half life from the usual 29 years to about 10 years is predicted to occur in a S

radio frequency field environment with E -8x10 Volt/an. Corrected estimates

have not been given yet, but it is argued [4,5] that enhancements of first order .-

forbidden decays should stay mere or less like they were. In contrast, Eq.

(3.20) yields for this case a relative change in the decay rate of about

2x10

The preceding calculation was for circular polarization. With slightly

more labor, it can be done for linear polarization as well, with qualitatively

the same results. Wireover, it can be shown that for an arbitrary plane wave

field (arbitrary. polarization and pulse shape) the total decay rate is entirely

independent of the field as long as the quasiclassical limit applies [15].

•.. . . . .. . ....

.L.-. . . . .. .. .
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IV. CON sCONS
4

We have shown that the effect of an intense plane wave field cn forbidden 0

beta-decay is much the same as it is on allowed beta-decay. There are two types -

of field-induced contributions to the total decay rate: one that does, via its

dependence on the nuclear coordinate, change the selection rules of the decay *

and one that does not. Both terms lead to an enhancement of the decay, but in

either case the enhancement is proportional to the squared ratio (E/E C,) of

ib
the applied over the critical field E = 1.3 x 10 Volt/cu. For an intense

focused laser field we have E/Ec 7 _, 10 at best, for a radio frequency field

the ratio is very much smaller.

Our results for the enhancement differ from previous recent estimates

[1,2,4,5] by twenty-four orders of magnitude. The reason for this large

discrepancy seems to be the following: the original explicit estimates for

various specific exaples [2] were later shown to be faulty [3] and withdrawn

L4,5]. However, in Refs. 4 and 5 the conclusion is maintained that there should

be an enhancement of the order of unity without explicit numbers being given.

This conclusion is drawn from the observation that there is a significant effect

of the external field on the differential decay rate. This, however, does not

necessarily reflect any substantial changes of the total decay rate. We have

shown previously [12] that the total decay rate of a neutral particle decaying

into various charged particles in the presence of an intense plane wave field,

is in the semi-classical (WKB) limit entirely independent of the field. This is

notwithstanding the fact that the energy spectrum of the decay products is

completely distorted by the field as compared to the field-free one ( for

examples in the case of allowed beta-decay see Ref. 13). The latter effect is

due to the essentially classical interaction between the field and the charged

decay products once the decay has already taken place. The decay itself is not

affected until the field becomes comparable with the (genuinely quantum

,,,-~~.,..................................................-......-...............-..... .... . -.......... ,-



mechanical) critical field E Reference 12 does not strictly acply to th2

present situation because the decaying nucleus is not neutral and there is :-3

allowance for bound particles. It is, however, easily extended to the presen-

situation [15]. The bottom line is the same: enorrous effects on the

differential decay rate do not correspond to any significant enhancement of the

total rate. The calculation initiated in Refs. 1, 2, 4, and 5 should, if

finished, lead to the same conclusion.

We should add a critical remark regarding our calculational approach

exhibited in Section 4. Equation (3.6) which displays the decay rate as the

result of applying a differential operator to the free decay rate is exact as it

stands. However, the following ev luation proceeds via perturbaticn theory with

respect to the external field. This is at a stage where the quantitative

legitimacy of perturbation theory is obvious; yet, the exact result is likely to

contain terms which are quantitatively minute, but nonanalytic with respect to

the coupling to the external field. 1his is known to be the case for allowed

beta-decay [13,14]. These terms cannot be obtained by our procedure. It should

be emrphasized that we do not apply perturbation tieory to the differential cecay

rate; the latter containing multiphoton interactions of extremely high order (up

to 10 ) between the field and the electron is clearly inaccessible by

perturbation theory of any reasonable finite order. Hcw;ever, the total decay

rate is a different matter: for fields below the critical field perturbation

theory yields a safely ccnvergen-t asy7.ptotic series.

We mention, finally, that the situation is entirely different, if there is

a significant interaction bet,(een the nucleus and the field. This ihappens, for

instance, if an intense x-ray laser is nearly resonant with an excited nuclear

level. In this case substantial enhancements of the total decay rate are found

[16].

-... -," -
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Comment on enhancement of forbidden nuclear beta decay by high-intensity
radio-frequency fields
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and Institute for Modern Optics. Department of Physics and Astronomy,
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(Received 23 May 1983)

A recent claim that forbidden nuclear beta decay can, by the application of a high-intensity radio- 0
frequency field, be enhanced by many orders of magnitude is contested. The effect is shown to be nonex-
istent, at least within the theoretical model which has been adopted thus far.

1. INTRODUCTION why Reiss's model cannot yield an enhancement of the nu-
clear decay rate we critically review the derivation and justi-

In two interesting recent publications | 2 Reiss claims that fication of the MTA wave function in Sec. V. By comparing
forbidden nuclear beta decay can, in the presence of an in- the "' - t" vs " - X" form of the interaction Hamiltonian
tense, but readily achievable radio frequency field, be we obtain an indication of why the MTA method is an un-
enhanced by many orders of magnitude, the more so the justified approximation. We then point out with the help of
higher forbidden the decay is. Of course, this would be a gauge arguments5 that the MTA wave function is nothing
fascinating effect, both from a theoretical and a practical but the correct unperturbed state in the Coulomb gauge.'
point of view. Unfortunately, we find, at least in the frame- This statement can be corroborated by writing the S matrix 0
work of the approximations and idealizations underlying this for the beta decay in different gauges. In this way we see
work, his conclusions to be incorrect and the effect nonex- that in Reiss's theory only the interaction of the field with
istent. the electron is incorporated exactly, whereas the interaction

The approach of Ref. I to nuclear beta decay in the pres- with the nucleus is completely neglected. This fact is in
ence of a strong external electromagnetic field treats the strict contrast to the statements and intentions of Ref. I and
weak coupling to first order of perturbation theory, but is leads to a completely different interpretation of the model.
supposed to take into account the coupling with the external If the interaction of the nucleus with the external field is
field to all orders, at least approximately. Hence in Reiss's not incorporated into the model, a modification of the total
model the state of the emitted electron is described by the decay rate can only originate from the coupling of the elec-
Volkov wave function,3 whereas the nuclear states are to be iron to the field. It was recently shown' that decays of neu- " -
well approximated by the so-called momentum translation tral particles are unaffected by the application of optical and,
approximation (MTA) wave function.' We shall show in even more so, radio frequency fields, to an excellent ap-
Sec. 11 by explicit calculation that within this particular proximation. Consequently, since Reiss's approach to the
model the total beta-decay rate is essentially independent of problem does not contain any genuine interaction of the nu-
the external electromagnetic field. Our argument turns out clei with the field, it cannot yield any impact on the nuclear
to be independent of whether or not we employ a relativistic lifetime. In Sec. VI we summarize our various criticisms of
description of the decay. Hence, for the sake of simplicity, Ref. 1.
we shall first turn to a completely nonrelativistic description
within a long wavelength approximation for the applied fl. FIELD INDEPENDENCE OF THE TOTAL
field. Once we have made our point, the generalization to TRANSITION PROBABILITY •
the f-ily relativistic problem is conceptually straightforward
and will be presented in Sec. I1. Our conclusion that the The starting point of the formalism of Refs. I and 2 is the
lifetime of a nucleus cannot be influenced by an external S matrix for nuclear beta decay. If we denote the weak in-
field in the framework of the model adopted by Reiss leads teraction, which causes the transition, by (gV), the nonrela-
us to suspect that Ref. I includes a calculational error. In tivistic limit to the S-matrix element to first order in the
Sec. IV we point out such an error. In order to understand weak coupling reads

s.--a f d' f d, T W ,) , .,) ., (V* ^r, (2.1)/ __ __ __ _ __ __ __ _ __ __ __ _:___ __ _

The various terms in Eq. (2.1) are discussed below. 'l', tion is then a solution of the Schr6dinger equation •
denotes the neutrino wave function, which is a plane wave
with momentum 4. Following the procedure outlined in i.A*,,)(r)( (2.2)
Ref. 1, we take the wave functions of the charged particles,-'m
i.e., the electron and the nucleus in the initial and final We use here natural units If - c - 1. Unlike the convention
state, to be in the Coulomb gauge. The electron wave func- in Ref. I where e- le 1, we denote the electric charge of a

29 1124 ®1984 The American Physical Society
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particle by e, so that, for instance, the electron charge is e - -e I. The exact solution of Eq. (2.2) is the nonrela-
tivistic Volkov wave function with momentum ,

V"( T;F)" f- 2eT()-e2X I Jdr (2.3)

where E-p 2 l2m, so that our nonrelativistic theory is only with
consistent for low energy emitted electrons. -2

The underlying nuclear model of Ref. I is the shell model Ho-2m, p-+ V( r) . (2.6)
with an inert 0+ core, which is affected neither by the beta V( ') denotes the nuclear binding potential, and m, is the
decay nor by the electromagnetic field, and one or more reduced nuclear mass [Eq. (5) of Ref. I). Since we consider
valence nucleons in an angular momentum cc-upled state. the nucleus initially and finally to be in an eigenstate 6,( T)
The nuclear wave functions * (") and 1 i(f) are then derived (n - if) of H0 with energy E., we shall later use 40 in the
from a one-particle Hamiltonian. The initial and final nu-
clear states are approximated in Ref. 1 by the so-called form
momentum translation approximation (MTA) wave func- 44E)( ',t) - e Ih( ') (2.7)
tion. This wave function is given by For the time being we shall adopt the MTA wave function

in the same way, as it is used in Ref. 1, and postpone a de-
'MTA(r.t)-exp[iNA(t)T(o( T.t) (2.4) tailed discussion on this subject to Sec. V.

The total transition probability per unit time is calculated
from the S-matrix element (2.1) bywhere iN is the reduced nuclear charge (Eq. (6) of Ref. 11

and 10 denotes the nuclear wave function in the absence of r-f d ..A1L" lim lIs 2 (2.8)
the external electromagnetic field, i.e., (2ir) (2w ) 3  -- T

If we insert the S-matrix element (2.1) into Eq. (2.8) using
( ",t)-Hoo( T.t) (2.5) the wave functions (2.3), (2.4), (2.7), and plane waves forA( the neutrino, the total rate r takes the form

-- [ " d r nIr2  ,-i)6 - dr dT/2d dt'exp[iEo(t- t) exp- ie [A(') F- A(I F1

2 T-- T.

x [( T'')(gV)( T )][G'( ')(gV)( T")1 . (2.9) 

Here Eo-E - Ef denotes the nuclear energy released in the beta decay. We furthermore used the relation i - if - e (see
Ref. 1, Eq. (49), and our convention for the sign of e1. In fact, this relation is only approximate, since the minor impact of
the external field on the nuclear core is neglected. The sum over the neutrino states is expressed in terms of a plane wave
Green's function with a dispersion E,- I i1,

G(,)( r',';r,)- fdq lf, 1( r,t;4)'',)( r',t';i)- fdq expi -iirWl('-t)expif( r'- r)i . (2.10)

All the electronic contributions to the total rate r are contained in the nonrelativistic Volkov Green's function

_e' f"X2(,)d,l dpxl lI-Ir2I r *-L "()
2m 2xm Mm

The integral (2.11) can be reduced to a Gaussian integral and we find

TA i  exp ,i' ), _ , I explie f ' r- )dT "-

i , ('- ) 2 t'1, - t t, J tx1,

The V term in Eq. (2.11) contributes to an effective mass (see Sec. 11l).
The essential fiekl dependence of the total rate r is concentrated in the factors

expIet[(fr) r'- (t) rll"

.............. .. ......
'. . .. .. ..... . .. .. . .. .. . .. ...
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and the Volkov Green's function G(.). In Ref. I the entire The estimate (2.13) is not significantly affected by the
effect of changing the degree of forbiddenness of the nu- external field, in particular, when there is no energy transfer
clear decay is derived from the factors exp( eX A') in Eq. from the field to the electron, as Reiss assumes.
(2.4). We shall now show explicitly that these factors actu- It was shown in Ref. 7 that in the classical limit i- 0
ally cancel out of the total decay rate against corresponding only times r' infinitesimally close to t contribute to the total
terms in G(,) and hence cannot give rise to the effects cal- transition rate r. In this limit the fieid-dependent exponen- 0
culated in Ref. 1. tials in the integrand of Eq. (2.9) are unity and only the

By inserting Eqs. (2.12) and (2.10) into the total decay field-independent part survives. Thus in the classical limit
rate (2.9), we see that in the field-free limit the major con- the total decay rate would be unaffected by the external
tribution to the time integral in Eq. (2.9) comes from time field. This is in agreement with the results of Ref. 7.
differences t'-t, for which the phase of the integrand is sta- The remaining field dependence in r is then only due to
tionary: quantum effects. It will be found to be very small for the

parameters of Ref. 1, as we shall now demonstrate. We can

mT- T) 2 
1/2 rewrite the space- and field-dependent exponential in the

~It- - 2(E0- E,)J "(2.13) electron Green's function (2.12) with the help of integration
_ _ _ _ _ _II by parts and find

explie f Sd-, X(,)J-expli~e((') T'- X(t) t1)exp(ie f d,,r~() (2.14)

with
r() F'F-f(r ) (2.15)

By inserting Eq. (2.12) with Eq. (2.14) into Eq. (2.9), we realize that the phase factors exp(ieA 7) cancel in the total decay
rate and we obtain

r- --- lim f d'r d'r' fdt d'exp(iEo('-t)IG )( ','; ,t)
(2r) T-- T

x J2,, j Jexp,,-t._rrlexplie f'dTK,6)E(1 • -

x[;( 7")(gV)o,( F) (O( T')(gV)*46/( T')I (2.16) .

In Ref. 1, Eq. (74), the nuclear intensity parameter z, terms in Eq. (2.16) do not depend on T and can therefore
not change the degree of forbiddenness of the decay.

z-(elA[Ro). (2.17) We also see from the estimate (2.18) that the actual

which specifies the magnitude of the phase exp(ieX F), was parameter that governs the field impact on the nuclear life-
assumed to be of order of unity. The actual remaining ex- time is S

ponential with a field and space dependence in Eq. (2.16) z,-(ewIIR ) 2 -z(wRo) 2  (2.19)
contains the integral

which is much smaller than :. This means that one needs a " ' "
Rlr)Elr)dr eRolEIIt' - tI much higher field intensity, or fields with a much shorter -.

wavelength than the one applied in Refs. I and 2, to pro-
SInR 2  duce a noticeable effect of the external field on the nuclear

E -E,, lifetime.

(2.18) Itt RELATIVISTIC THEORY
Here Ro denotes the nuclear radius, and the length of the

time interval was estimated by Eq. (2.13). We furthermore We shall now address ourselves to a relativistic treatment • ". " .-
determined the amplitude of the electric field by Ihl-,l kl, of the electron in analogy with Ref. 1. For a quantitative
corresponding to a monochromatic plane wave with fre- analysis this is indispensable because the electron energy S

quency w, and applied Eq. (82) of Ref. 1. Equation (2.18) will, in general, be relativistic, and because the entire decay
shows that the field- and space-dependent exponential in process is intrinsically relativistic. However, the crucial . . -
Eq. (2.16) is unity to an excellent approximation, i.e., the point of the preceding analysis, the actual replacement of
factors exp(seA 7'), which are the origin of the large the superficial appearing gauge factors exp(eA7') by
enhancement obtained in Refs. I and 2. cancel. The X

2  exp(ie fdrR(r)f(r)] in the total decay rate, will proceed "

. ..:. :.. . . . . .:
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completely analogously in the relativistic treatment. We (2.8). The decisive point is that any Green's function in the
then shall have to examine the remaining expressions for presence of an external field A'(x) can be split as'
possible additional terms incorporating A T which might
yield the large enhancements claimed by Reiss. These will ' (3.3)

have to be relativistic quantum terms induced by a radio where
frequency field. Hence it is not likely that they will play any
significant role, and, in fact, they will not turn out to do so. 4(x',x)-expI-ie fzd ,Ap(,), (3.4)

The starting point will now be the relativistic S-matrix '

element Spv as given in Eq. (7) of Ref. 1. As we did in Eq. is Schwinger's line integral which is to be integrated over a
(2.8). we shall again sum over the electron's final momenta straight line connecting x with x' [the definition can be -

p and spins s, obtaining given in a path-independent way (see Ref. 8)), and
)(x',x ) is gauge invariant, i.e., depends only on E and •

R -j f . I $,2 Hence the entire gauge dependence is isolated in the line in- -2p0 spns tegral (3.4). Collecting now all the TA-dependent ex-
ponentials in Eq. (3.1) we obtain

"-exp[ieI T(1)-F"X(t')I-ie f f, AP,) . -G 'f dxd'x'l f(x ).0 l- , s)41' (x )
"m ~(3.5)

x [ (x') (I + s)1,'l(x' ) ]Evaluating the line integral yieldsfs",fAU - f .. ..UX(,
x [('(x )(I +ys)Y 0G t + (x,x) kzf AAi()- '- x)

(3.6) . '

where k,, denotes the wave vector of the field A,(kx). In

Here the long wavelength approximation, which is finally also
adopted in the relativistic treatment of Ref. 1, Eq. (3.6)

G')(x,x)- fd4p(po)8(p2- m2)E(x'.p)(r+m)E(xp) reproduces the expression which we already encountered in
the nonrelativistic treatment. The exponential (3.5) is then

(3.2) identical to the corresponding exponential in Eq. (2.9) with

is the homogeneous positive frequency Volkov Green's the nonrelativistic Green's function (2.12), and the argu-
ments pointed out, following Eq. (2.12), apply to the rela-

function replacing Eq. (2.11). and we have written the Vol- tivistic case as well.
kov solution in the form Finally, in order to make sure that the gauge-invariant -.

1P (.)(Xp)-E(X,P)u(P,S) remainder Gd+) in Eq. (3.3) does not, so to speak by the
back door, reintroduce corresponding exponentials, we shall

where u (p,s) is the free Dirac spinor so that now write down the complete Green's function G( +
)(x',x). .-

(v-m)u (p.s)-0 . The easiest way to obtain it is by straightforward evaluationof Eq. (3.2), given the Volkov wave functions E(x,p). The
We are again using the Coulomb gauge so that the nuclear analogous approach has been followed, e.g., in Ref. 9, in .- -

wave functions are given by Eq. (2.4). the case of the Feynman propagator. The result (for arbi- . . -

The quantity R, when summed over the final states of the trary polarization, i.e., A '- ?I ejA,(j), kx, keO, -
nucleus and the neutrino, yields the total decay rate of Eq. eje 1- -8,) is very closely related to the former and reads .

I

r)_dsiI(x-7x,) ]9.''.
¢ ( + ( x 'A) x" -s (m l+ T )- - (X"- X

X)- f' 
-4s

x fe[sQc' -C)Jj(W-X,) +m - 2msA*,M

4Q'-f -~Lj + i(Q'- f s,aijM, + 4-(x"- x)L + sW- f-(L,z -M1
2) -fTf

+ iys*[[- o(x"-x')M + 2s(C'-eoLMJJ + i sgn(s )X8( '- )1 • (3.7) _ .

Here x' denotes the two vector components of x"1 transverse to k*. We adopt a summation convention for the indices i and
J extending from I to 2, and e.- -e,#, - i. The functions L, A#, ,iad Tare given by

• . . . . . . ... .. . .. . . , . .. . .. .,. .. ..- ... _., .... .::- .

:K.,,.- ,.- .- ... -:---...,,'--..---.-.-- .'.. -':.. .-....-.. ...',. ,.'. _. '. - -' '." -"- .. - . - " '_-__'-'_.- . -" - "_"_, -, ___-'""""".'" ..
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e2 f _

M,(E'.)- - - [A,') -A,()] (3.9)
-2(e'-C)

L,('_- -  A2')A, - 2 dA )(3.10)
2(C'-C) .-• ..J

We incidentally note that the quantity T(C'. ) in view of V. REVIEW AND CRITICISM OF THE MTA -

Eq. (3.7) specifies a space-time-dependent mass correction. WAVE FUNCTION ..:

It already showed up in the nonrelativistic treatment (cf. the
last exponential in Eq. (2.12)). For a review of the MTA wave function from Reiss's

We now have to check whether Eq. (3.7) contains any point of view we refer to Ref. 4. The MTA method claims
terms similar to cos(eiTF-e'iT'), which is the sole cause to be "gauge specific" for the Coulomb gauge (C gauge;
of the enhancement in Ref. I [cf. Eq. (110)A. There are vector potential X and vanishing scalar potential Ao-O).
two candidates in Eq. (3.7): The Schr~dinger equation in the long-wavelength approxi-

-. x-1)j -mation for the vector potential X then has the form-K((x"- x' )L,. - iVSNE(x"-x')Mj "a' F I H+ 1 ,II(Ft 51

We notice that they are both only linear in (x"-x').
Hence they can at best reduce the order of forbiddenness by
one. Since they are proportional to A'. their order of magni- with

tude is weIXkIRo-wefz, which has to be compared with the H )

electron mass m in the square bracket in Eq. (3.7). Since 2m M
/m << , in particular, for a radio frequency field, whatev- (5.2)

er effect is caused by these terms will be very small, as was
to be expected. If one writes an ansatz for ' A Fi) in the form

IV. AN ALGEBRAICAL ERROR IN REF. 1'I( ,t) -exp~ieA(t) F'] ( t) (5.3)~~~then the new wave function 4)(t',t) obeys the equation of ---

I The above considerations strongly suggest that there is a ten

computational error in Ref. 1. Hence we have cursorily motion

checked some of the calculations. In fact, it appears that
factors ( -)J and i" are missing on the right-hand side of i a -f,)-[Ho+fH2(014I(f.) (5.4)

. Eqs. (56) and (57) of Ref. I. respectively, which should ,,
read with

1 exp(-ief')-exp[-ie cos(kx+p)] H2 ()- -e(f) " . (5.5)

- Jj(eT)exp[-ij(kx+p)(-i)' The so-called "momentum translation approximation"
consists of neglecting the perturbation H2 in Eq. (5.4) and

(4.1a) replacing (b in Eq. (5.3) by the unperturbed wave function

and 400, given by

exp(ie,'F')-explieE"'cos(kx'+p)I I-F0o( F,t) - H 0 0( 1F,t) . (5.6)

- Y,,(e1F')exp[im(kx'+p)Jim 
. (4.1b) We then obtain the MTA wave function as an approxima-

a--" tion of the exact solution 'I:

vThese factors seem to be consistently missing. If they are
included, the crucial equation (110) of Ref. i, *o(t)-exp[ieA(0) j(]o( ,) (5.7)

*,(-)eJzq(eT-eiF')-cos(erF-ea F') , (4.2) This procedure is considered to be justified if H2 is much

-. smaller than H,, in particular, when H, is too large to be
loses the factor ( - )l on the left-hand side and is changed treated as a perturbation with respect to H0, whereas H2 still
into is a small perturbation compared with Ho (i.e., the magni-

tude of H 2 is small as compared with a characteristic energy
IJz.(e'-e!F')- 1 , ( of the field-free problem).10 The condition "H 2 small com-
* pared with H," means that the transition matrix elements

* . and there is no field induced enhancement of forbidden from an initial unperturbed state i) to a final unperturbed
beta decay, in agreement with the arguments previously put state If) are much smaller when the transition is induced
forward in this paper. by the residual interaction H2 instead of H1 . The states ji) ..-

. . . .. .
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and If) are eigenstates of HO: This holds true to any order in the perturbation series."
We can furthermore drop the restriction (5.14) and obtain

(5.8) equal transition amplitudes F(T) at any time T, if we take
By using the commutator relation into account that the same physical state is represented by

different state vectors in different gauges if A,(0) ;0 or
I T.Ho (5.9) A(T) d 0 (see next paragraphs). The error will therefore - S

m be of the same order of magnitude whether one neglects the
as well as interaction H 2 in Eq. (5.4) or H, in Eq. (5.1) for any ratio

of the field frequency w over the typical transition energy "
I 1-caiII . (5.10) E,-El. Since the approximate solution 4)o of Eq. (5.4) is

an unperturbed wave function, these arguments indicatewe find that also the MTA wave function represents a noninteract-
I(fH2()i)l w ing state.
I~fI 2 (t)lI) - " • (5.11) In order to see that the MTA wave function represents

(E nothing but a noninteracting state, we must consider the
Hence in situations where the field frequency is much different gauges involved in the problem. The wave func-
smaller than the considered transition energy, the MTA tions of all charged particles participating in any reaction or
procedure might seem to .be well jusiified. decay process must be taken consistently in the same gauge. -

As we have noted, central to the' MTA is the condition The Coulomb gauge is convenient for the calculation of the S
that the transition matrix elements for the interaction H 2  Volkov wave function of a free particle in the presence of
are much smaller than for its counterpart H1. This applies, an external electromagnetic field. To derive the properties
in particular, to nuclear transitions in the presence of an op- of the nonrelativistic MTA wave function it is more instruc-
tical or even radio frequency field. But one must be careful tive to begin with the electric field gauge [E gauge; vanish.
in drawing conclusions from or making approximations ing vector potential -0 and scalar potential - eE(t) FI.
based upon the estimate (5.11). Instead of transition matrix Wave functions are transformed from the C gauge (notation -

elements, one actually has to compare transition probabili- T) to the E gauge (notation () by the unitary transforma-
ties, which are the directly measurable quantities. As we tion
shall see below, the factor w/(E,-Ef) does not occur after
integration over time and the two interactions H, and H 2
give the same transition probabilities for any ratio of w over where A is the vector potential in long wavelength approxi-
(E 4-E 1 ). mation for the C gauge.

Let us repeat a supposedly well known argument. In the The Schr6dinger equation in the E gauge has the form _ O
interaction picture the transition amplitude to first order of (5.4), which was derived at the beginning of this chapter in -
perturbation theory reads a different context. If we entirely neglect the interaction of

roT the particle with the field to a zeroth approximation, we ob-
F(T)- -i dtexp[-i(E,-E)tI(fIHjn,(0)i) tain from Eq. (5.6) as an approximate solution the wave

(5.12) function 4)0 in the absence of the external field.
In the present example of beta decay, the nuclear state

If we use the interaction H,,- H 2, we find has to be determined from the Schr6dinger equation in the --
C gauge, i.e., from Eq. (5.1), since the electron wave func-

F(T)-ie(f 'li) dtexp[-i(E,-Ef)tdf(t) . (5.13) tion is given in the Cgauge. If we approximate the solution
of Eq. (5.1) by the noninteracting state 00 in the E gauge

For the case H1a,- H,, let us consider the situation where and use the gauge transformation (5.16), we obtain the "
the field is switched on at time t-0 and that we are only wave function ' 0 of Eq. (5.7), the MTA wave function.
interested in the transition probability at time T, when the Although 'o depends on the vector potential A, it still S
field is already switched off, so that represents a noninteracting state since a state vector which

X(0)-0. A(T)-0 . (5.14) does not include any interaction with the external field in a
particular gauge (here the E gauge), neither does so when

This is the usual experimental situation. We can then transformed to any other gauge (here the C gauge).
rewrite the integral in Eq. (5.12) by partial integration It should be mentioned that the wave function (10 is not

r  the correct noninteracting solution in the C gauge. In the C
exp[-i(E, - Ef)t (td gauge the operator of the canonical momentum - -i S

differs from the operator of the kinetical momentum.
- I r Hence in the C gauge the Hamiltonian Ho in Eq. (5.2) does .

E,-E, exp[-i(E,-E)tIE(Ad . (5.15) not describe the situation, where the interaction of the parti-. " .- "
cle with the field is entirely neglected. The correct pro-

We have now obtained a factor (E, - E,) by replacing A by cedure is first to transform from the C gauge via (5.16) to
I in the integrand. instead of the factor w, which entered the E gauge, where the vector potential vanishes and the
the relation (5.11) via Eq. (5.10). By using Eqs. (5,9) and operators of the kinetical and canonical momentum are
(5.15) we find for H,,,- H, again the transition amplitude identical, so that p2/2m is the operator of the kinetical ener-
(5.13). gy. Hence in this gauge the Hamiltonian in Eq. (5.6) really

This simple calculation shows that the transition probabili- specifies the field-free motion, and Oo represents the state
ty is the same whether one uses the interaction H, or H2. in the absence of the field. The wave function in the C

.- . . ,. .. .........-...- ,. .:::::.:
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gauge, which completely neglects the interaction with the does not include any interaction between the nucleus and 0

field, is then given by Eq. (5.7), i.e., by the MTA wave the field. Notably, the so-called momentum-translation
function. For a lucid and thorough discussion of gauge in- (MTA) wave function is nothing but the correct free wave
variance in quantum mechanics see Ref. 5. function in the Coulomb gauge, as was shown in Sec. V in

Applying this discussion to the nuclear beta decay, we see three different ways. (i) The total decay rate cannot be in-
that the S matrix (2.1) includes the exact electron state and fluenced by an external field as chosen in Ref. I, if one
noninteracting nuclear states in the C gauge. In the nonrel- describes the electron by the relativistic Volkov wave func- 0
ativistic approach the S matrix could dlso be written in the E tion and the nucleus by the nonrelativistic MTA wave func-
gauge. The unperturbed nuclear state is then given by the tion. This can be derived by general arguments from point
field-free wave function (o, and the gauge phase (i) and Ref. 7. We also prove this explicitly in Secs. 11 and -

exp(ieX ) is incorporated in the corresponding Volkov Ill. There we show that in a correct treatment the gauge
wave function, which we obtain from Eq. (2.3) and the factors exp(ieX F) (from which Ref. I derives its entire ef-
transformation (5.16). The entire field dependence is then fect) mutually cancel in the total decay rate. Our argument
concentrated in the electronic wave function. This pro- shows that this cancellation is independent of the polariza-
cedure yields the same analytical form of the S-matrix ele- tion and pulse shape of the external field. The dramatic
ment as Eq. (2.1). enhancements of Refs. I and 2 seem to be due to an alge-

The factor exp(ieXF) always appears when one con- braic error. When this is corrected no enhancement
sistently combines the nuclear state in the absence of the remains, in agreement with the results of Secs. I1 and 111.
field, which is related to the E gauge, with a Volkov state, The physical concept underlying Refs. 1 and 2 differs
which can be calculated in a simple way for the C gauge. from the previous work (Refs. 12 and 13) by intending to
This factor can be shifted from the nuclear to the electronic concentrate on forbidden beta decay in the presence of an
wave function in different gauges and has nothing to do intense radio frequency field rather than an optical field.
with the interaction of the nucleus with the field. The iden- Some final remarks on these two new aspects: (a) Chang-
tification of the factor exp( ieA F) in Eq. (5.3) as a gauge ing the degree of forbiddenness of a nuclear decay by modi-
transformation was in the present context first pointed out fying the nuclear states under the impact of an external field
in Ref. 6. In Ref. 4, Reiss does not consider this factor as a is an exciting idea, but cannot be achieved by Reiss's
gauge transformation but rather calls it a "unitary transfor- model, which only uses noninteracting nuclear states. in
mation within the Coulomb gauge." He then claims that particular, it should be emphasized that Reiss tries to treat
due to this phase factor the MTA wave function fairly forbidden beta decay along the same lines as allowed beta de-
represents the effects of the applied field on the particle to cay, i.e., a multipole expansion of the lepton wave functions
any order of interaction. Relying on this interpretation, and relativistic corrections to the nuclear wave functions,
Reiss attempts in Ref. I to derive the entire effect of chang- both of which normally enable forbidden decays to take
ing the degree of forbiddenness of a nuclear decay and of place, are not considered, since the dominant mechanism of
enhancing nuclear decay rates from this factor exp(ieA F). the enhancement is supposed to originate from the gauge -

If the interaction of the nucleus with the field is neglect- factors exp(,eX F). (b) The advantage of radio frequencies
ed, only the coupling of the electron with the field can still as compared with optical frequencies seems to lie in the fact
modify the nuclear lifetime. But as it was shown in Ref. 7, that larger values of the parameter (ea/m ) can be achieved
this can only happen for a field which is much stronger than at much lower field strengths. But if very high intensity ra-
the one considered in Ref. 1, as long as the field frequency dio frequency fields with a wavelength of X - 100 m (Ref.
is very small as compared with the nuclear decay energy. 2) are applied, the applicability of the Volkov solution, 0
Therefore the model used in Ref. 1 cannot result in an ap- which assumes a plane wave field of infinite extent in space
preciable change of the nuclear lifetime, and time, seems very doubtful and certainly requires some

justification. A relativistic electron which moves freely in
such a field performs an oscillatory motion over a distance

V. SUMMARY of X,. Such electromagnetic fields also raise experimental
problems, since the atomic electrons tend to shield an exter-

The basic formalism developed at length in Ref. I is nal low frequency field, reducing its field strength at the site
essentially the same as in Refs. 12 and 13 (cf. Ref. 14). of the nucleus by orders of magnitude.15

The theory of Ref. 1 only differs from this previous work by We would finally like to emphasize that it remains an
using the correct noninteracting wave function *0 (2.4) in- open question as to whether properly including the interac-
stead of (o (2.5) (but with the misguided intention of incor- tion between the nucleus and the field might yet lead to
porating the interaction with the field) and by considering some enhancement of forbidden beta decay, although we
linear polarization of the field instead of circular polariza- believe that the orders of magnitude stated in Refs. I and 2
tion. Whether the field is linearly or circularly polarized is are very unlikely to be achieved by the latter mechanism.
rather immaterial for the effects in question. Considering
linear in place of circular polarization mainly increases the We benefited from discussions with D. H. Kobe and P.
calculational labor without adding additional insight. Zoller. This work was supported in part by the Air Force

We would like to concentrate on two central objections to Office of Scientific Research under Contract No. AFOSR-
Refs. I and 2: i) Contrary to its intentions, Reiss's model 81-0128.
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